Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/sgd_optimization.py @ 352:cfb79f9fd1a4
Ajout d'une fonctionnalite pour pouvoir avoir un taux d'apprentissage decroissant dans le pretrain
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Wed, 21 Apr 2010 14:50:59 -0400 |
parents | 625c0c3fcbdb |
children | b599886e3655 |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py Wed Apr 21 14:07:53 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Wed Apr 21 14:50:59 2010 -0400 @@ -88,30 +88,40 @@ self.pretrain(self.dataset) self.finetune(self.dataset) - def pretrain(self,dataset): + def pretrain(self,dataset,decrease=0): print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file start_time = time.clock() + + ######## This is hardcoaded. THe 0.95 parameter is hardcoaded and can be changed at will ### + #Set the decreasing rate of the learning rate. We want the final learning rate to + #be 5% of the original learning rate. The decreasing factor is linear + decreasing = (decrease*self.hp.pretraining_lr)/float(self.hp.pretraining_epochs_per_layer*800000/self.hp.minibatch_size) + ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): # go through pretraining epochs + + #To reset the learning rate to his original value + learning_rate=self.hp.pretraining_lr for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set batch_index=0 count=0 num_files=0 for x,y in dataset.train(self.hp.minibatch_size): - c = self.classifier.pretrain_functions[i](x) + c = self.classifier.pretrain_functions[i](x,learning_rate) count +=1 self.series["reconstruction_error"].append((epoch, batch_index), c) batch_index+=1 - #if batch_index % 100 == 0: - # print "100 batches" + #If we need to decrease the learning rate for the pretrain + if decrease != 0: + learning_rate -= decreasing # useful when doing tests if self.max_minibatches and batch_index >= self.max_minibatches: @@ -205,7 +215,7 @@ parameters_finetune=[] if ind_test == 21: - learning_rate = self.hp.finetuning_lr / 5.0 + learning_rate = self.hp.finetuning_lr / 10.0 else: learning_rate = self.hp.finetuning_lr #The initial finetune lr