diff utils/tables_series/series.py @ 208:acb942530923

Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
author fsavard
date Fri, 05 Mar 2010 18:07:20 -0500
parents
children dc0d77c8a878
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/utils/tables_series/series.py	Fri Mar 05 18:07:20 2010 -0500
@@ -0,0 +1,227 @@
+from tables import *
+import numpy
+
+'''
+The way these "IsDescription constructor" work is simple: write the
+code as if it were in a file, then exec()ute it, leaving us with
+a local-scoped LocalDescription which may be used to call createTable.
+
+It's a small hack, but it's necessary as the names of the columns
+are retrieved based on the variable name, which we can't programmatically set
+otherwise.
+'''
+
+def get_beginning_description_n_ints(int_names, int_width=64):
+    int_constructor = "Int64Col"
+    if int_width == 32:
+        int_constructor = "Int32Col"
+
+    toexec = "class LocalDescription(IsDescription):\n"
+
+    pos = 0
+
+    for n in int_names:
+        toexec += "\t" + n + " = " + int_constructor + "(pos=" + str(pos) + ")\n"
+
+    return toexec
+
+def get_description_with_n_ints_n_floats(int_names, float_names, int_width=64, float_width=32):
+    """
+    Constructs a class to be used when constructing a table with PyTables.
+
+    This is useful to construct a series with an index with multiple levels.
+    E.g. if you want to index your "validation error" with "epoch" first, then
+    "minibatch_index" second, you'd use two "int_names".
+
+    Parameters
+    ----------
+    int_names : tuple of str
+        Names of the int (e.g. index) columns
+    float_names : tuple of str
+        Names of the float (e.g. error) columns
+    int_width : {'32', '64'}
+        Type of ints.
+    float_width : {'32', '64'}
+        Type of floats.
+
+    Returns
+    -------
+    A class object, to pass to createTable()
+    """
+
+    toexec = get_beginning_description_n_ints(int_names, int_width=int_width)
+
+    float_constructor = "Float32Col"
+    if float_width == 64:
+        float_constructor = "Float64Col"
+    
+    pos = len(int_names)
+
+    for n in float_names:
+        toexec += "\t" + n + " = " + float_constructor + "(pos=" + str(pos) + ")\n"
+
+    exec(toexec)
+
+    return LocalDescription
+
+class Series():
+    def __init__(self, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'):
+        """This is used as metadata in the HDF5 file to identify the series"""
+        self.table_name = table_name
+        self.hdf5_file = hdf5_file
+        self.index_names = index_names
+        self.title = title
+
+    def append(self, index, element):
+        raise NotImplementedError
+
+class ErrorSeries(Series):
+    def __init__(self, error_name, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'):
+        Series.__init__(self, table_name, hdf5_file, index_names, title)
+
+        self.error_name = error_name
+
+        table_description = self._get_table_description()
+
+        self._table = hdf5_file.createTable(hdf5_group, self.table_name, table_description, title=title)
+
+    def _get_table_description(self):
+        return get_description_with_n_ints_n_floats(self.index_names, (self.error_name,))
+
+    def append(self, index, error):
+        if len(index) != len(self.index_names):
+            raise ValueError("index provided does not have the right length (expected " \
+                            + str(len(self.index_names)) + " got " + str(len(index)))
+
+        newrow = self._table.row
+
+        for col_name, value in zip(self.index_names, index):
+            newrow[col_name] = value
+        newrow[self.error_name] = error
+
+        newrow.append()
+
+        self.hdf5_file.flush()
+
+# Does not inherit from Series because it does not itself need to
+# access the hdf5_file and does not need a series_name (provided
+# by the base_series.)
+class AccumulatorSeriesWrapper():
+    """
+    
+    """
+    def __init__(self, base_series, reduce_every, reduce_function=numpy.mean):
+        self.base_series = base_series
+        self.reduce_function = reduce_function
+        self.reduce_every = reduce_every
+
+        self._buffer = []
+
+    
+    def append(self, index, element):
+        """
+        Parameters
+        ----------
+        index : tuple of int
+            The index used is the one of the last element reduced. E.g. if
+            you accumulate over the first 1000 minibatches, the index
+            passed to the base_series.append() function will be 1000.
+        """
+        self._buffer.append(element)
+
+        if len(self._buffer) == self.reduce_every:
+            reduced = self.reduce_function(self._buffer)
+            self.base_series.append(index, reduced)
+            self._buffer = []
+
+        # This should never happen, except if lists
+        # were appended, which should be a red flag.
+        assert len(self._buffer) < self.reduce_every
+
+# Outside of class to fix an issue with exec in Python 2.6.
+# My sorries to the God of pretty code.
+def BasicStatisticsSeries_construct_table_toexec(index_names):
+    toexec = get_beginning_description_n_ints(index_names)
+
+    bpos = len(index_names)
+    toexec += "\tmean = Float32Col(pos=" + str(bpos) + ")\n"
+    toexec += "\tmin = Float32Col(pos=" + str(bpos+1) + ")\n"
+    toexec += "\tmax = Float32Col(pos=" + str(bpos+2) + ")\n"
+    toexec += "\tstd = Float32Col(pos=" + str(bpos+3) + ")\n"
+    
+    # This creates "LocalDescription", which we may then use
+    exec(toexec)
+
+    return LocalDescription
+
+class BasicStatisticsSeries(Series):
+    """
+    Parameters
+    ----------
+    series_name : str
+        Not optional here. Will be prepended with "Basic statistics for "
+    """
+    def __init__(self, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'):
+        Series.__init__(self, table_name, hdf5_file, index_names, title)
+
+        self.hdf5_group = hdf5_group
+
+        self.construct_table()
+
+    def construct_table(self):
+        table_description = BasicStatisticsSeries_construct_table_toexec(self.index_names)
+
+        self._table = self.hdf5_file.createTable(self.hdf5_group, self.table_name, table_description)
+
+    def append(self, index, array):
+        if len(index) != len(self.index_names):
+            raise ValueError("index provided does not have the right length (expected " \
+                            + str(len(self.index_names)) + " got " + str(len(index)))
+
+        newrow = self._table.row
+
+        for col_name, value in zip(self.index_names, index):
+            newrow[col_name] = value
+
+        newrow["mean"] = numpy.mean(array)
+        newrow["min"] = numpy.min(array)
+        newrow["max"] = numpy.max(array)
+        newrow["std"] = numpy.std(array)
+
+        newrow.append()
+
+        self.hdf5_file.flush()
+
+class SeriesArrayWrapper():
+    """
+    Simply redistributes any number of elements to sub-series to respective append()s.
+    """
+
+    def __init__(self, base_series_list):
+        self.base_series_list = base_series_list
+
+    def append(self, index, elements):
+        if len(elements) != len(self.base_series_list):
+            raise ValueError("not enough or too much elements provided (expected " \
+                            + str(len(self.base_series_list)) + " got " + str(len(elements)))
+
+        for series, el in zip(self.base_series_list, elements):
+            series.append(index, el)
+
+class ParamsStatisticsWrapper(SeriesArrayWrapper):
+    def __init__(self, arrays_names, new_group_name, hdf5_file, base_group='/', index_names=('epoch',), title=""):
+        base_series_list = []
+
+        new_group = hdf5_file.createGroup(base_group, new_group_name, title=title)
+
+        for name in arrays_names:
+            base_series_list.append(
+                        BasicStatisticsSeries(
+                                table_name=name,
+                                hdf5_file=hdf5_file,
+                                index_names=('epoch','minibatch'),
+                                hdf5_group=new_group._v_pathname))
+
+        SeriesArrayWrapper.__init__(self, base_series_list)
+
+