Mercurial > ift6266
diff utils/tables_series/series.py @ 208:acb942530923
Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
author | fsavard |
---|---|
date | Fri, 05 Mar 2010 18:07:20 -0500 |
parents | |
children | dc0d77c8a878 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/utils/tables_series/series.py Fri Mar 05 18:07:20 2010 -0500 @@ -0,0 +1,227 @@ +from tables import * +import numpy + +''' +The way these "IsDescription constructor" work is simple: write the +code as if it were in a file, then exec()ute it, leaving us with +a local-scoped LocalDescription which may be used to call createTable. + +It's a small hack, but it's necessary as the names of the columns +are retrieved based on the variable name, which we can't programmatically set +otherwise. +''' + +def get_beginning_description_n_ints(int_names, int_width=64): + int_constructor = "Int64Col" + if int_width == 32: + int_constructor = "Int32Col" + + toexec = "class LocalDescription(IsDescription):\n" + + pos = 0 + + for n in int_names: + toexec += "\t" + n + " = " + int_constructor + "(pos=" + str(pos) + ")\n" + + return toexec + +def get_description_with_n_ints_n_floats(int_names, float_names, int_width=64, float_width=32): + """ + Constructs a class to be used when constructing a table with PyTables. + + This is useful to construct a series with an index with multiple levels. + E.g. if you want to index your "validation error" with "epoch" first, then + "minibatch_index" second, you'd use two "int_names". + + Parameters + ---------- + int_names : tuple of str + Names of the int (e.g. index) columns + float_names : tuple of str + Names of the float (e.g. error) columns + int_width : {'32', '64'} + Type of ints. + float_width : {'32', '64'} + Type of floats. + + Returns + ------- + A class object, to pass to createTable() + """ + + toexec = get_beginning_description_n_ints(int_names, int_width=int_width) + + float_constructor = "Float32Col" + if float_width == 64: + float_constructor = "Float64Col" + + pos = len(int_names) + + for n in float_names: + toexec += "\t" + n + " = " + float_constructor + "(pos=" + str(pos) + ")\n" + + exec(toexec) + + return LocalDescription + +class Series(): + def __init__(self, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'): + """This is used as metadata in the HDF5 file to identify the series""" + self.table_name = table_name + self.hdf5_file = hdf5_file + self.index_names = index_names + self.title = title + + def append(self, index, element): + raise NotImplementedError + +class ErrorSeries(Series): + def __init__(self, error_name, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'): + Series.__init__(self, table_name, hdf5_file, index_names, title) + + self.error_name = error_name + + table_description = self._get_table_description() + + self._table = hdf5_file.createTable(hdf5_group, self.table_name, table_description, title=title) + + def _get_table_description(self): + return get_description_with_n_ints_n_floats(self.index_names, (self.error_name,)) + + def append(self, index, error): + if len(index) != len(self.index_names): + raise ValueError("index provided does not have the right length (expected " \ + + str(len(self.index_names)) + " got " + str(len(index))) + + newrow = self._table.row + + for col_name, value in zip(self.index_names, index): + newrow[col_name] = value + newrow[self.error_name] = error + + newrow.append() + + self.hdf5_file.flush() + +# Does not inherit from Series because it does not itself need to +# access the hdf5_file and does not need a series_name (provided +# by the base_series.) +class AccumulatorSeriesWrapper(): + """ + + """ + def __init__(self, base_series, reduce_every, reduce_function=numpy.mean): + self.base_series = base_series + self.reduce_function = reduce_function + self.reduce_every = reduce_every + + self._buffer = [] + + + def append(self, index, element): + """ + Parameters + ---------- + index : tuple of int + The index used is the one of the last element reduced. E.g. if + you accumulate over the first 1000 minibatches, the index + passed to the base_series.append() function will be 1000. + """ + self._buffer.append(element) + + if len(self._buffer) == self.reduce_every: + reduced = self.reduce_function(self._buffer) + self.base_series.append(index, reduced) + self._buffer = [] + + # This should never happen, except if lists + # were appended, which should be a red flag. + assert len(self._buffer) < self.reduce_every + +# Outside of class to fix an issue with exec in Python 2.6. +# My sorries to the God of pretty code. +def BasicStatisticsSeries_construct_table_toexec(index_names): + toexec = get_beginning_description_n_ints(index_names) + + bpos = len(index_names) + toexec += "\tmean = Float32Col(pos=" + str(bpos) + ")\n" + toexec += "\tmin = Float32Col(pos=" + str(bpos+1) + ")\n" + toexec += "\tmax = Float32Col(pos=" + str(bpos+2) + ")\n" + toexec += "\tstd = Float32Col(pos=" + str(bpos+3) + ")\n" + + # This creates "LocalDescription", which we may then use + exec(toexec) + + return LocalDescription + +class BasicStatisticsSeries(Series): + """ + Parameters + ---------- + series_name : str + Not optional here. Will be prepended with "Basic statistics for " + """ + def __init__(self, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'): + Series.__init__(self, table_name, hdf5_file, index_names, title) + + self.hdf5_group = hdf5_group + + self.construct_table() + + def construct_table(self): + table_description = BasicStatisticsSeries_construct_table_toexec(self.index_names) + + self._table = self.hdf5_file.createTable(self.hdf5_group, self.table_name, table_description) + + def append(self, index, array): + if len(index) != len(self.index_names): + raise ValueError("index provided does not have the right length (expected " \ + + str(len(self.index_names)) + " got " + str(len(index))) + + newrow = self._table.row + + for col_name, value in zip(self.index_names, index): + newrow[col_name] = value + + newrow["mean"] = numpy.mean(array) + newrow["min"] = numpy.min(array) + newrow["max"] = numpy.max(array) + newrow["std"] = numpy.std(array) + + newrow.append() + + self.hdf5_file.flush() + +class SeriesArrayWrapper(): + """ + Simply redistributes any number of elements to sub-series to respective append()s. + """ + + def __init__(self, base_series_list): + self.base_series_list = base_series_list + + def append(self, index, elements): + if len(elements) != len(self.base_series_list): + raise ValueError("not enough or too much elements provided (expected " \ + + str(len(self.base_series_list)) + " got " + str(len(elements))) + + for series, el in zip(self.base_series_list, elements): + series.append(index, el) + +class ParamsStatisticsWrapper(SeriesArrayWrapper): + def __init__(self, arrays_names, new_group_name, hdf5_file, base_group='/', index_names=('epoch',), title=""): + base_series_list = [] + + new_group = hdf5_file.createGroup(base_group, new_group_name, title=title) + + for name in arrays_names: + base_series_list.append( + BasicStatisticsSeries( + table_name=name, + hdf5_file=hdf5_file, + index_names=('epoch','minibatch'), + hdf5_group=new_group._v_pathname)) + + SeriesArrayWrapper.__init__(self, base_series_list) + +