diff deep/stacked_dae/sgd_optimization.py @ 208:acb942530923

Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
author fsavard
date Fri, 05 Mar 2010 18:07:20 -0500
parents e656edaedb48
children 7b4507295eba
line wrap: on
line diff
--- a/deep/stacked_dae/sgd_optimization.py	Thu Mar 04 08:21:43 2010 -0500
+++ b/deep/stacked_dae/sgd_optimization.py	Fri Mar 05 18:07:20 2010 -0500
@@ -86,6 +86,8 @@
                           finetune_lr = self.hp.finetuning_lr,\
                           input_divider = self.input_divider )
 
+        #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
+
         sys.stdout.flush()
 
     def train(self):
@@ -96,6 +98,9 @@
         print "STARTING PRETRAINING, time = ", datetime.datetime.now()
         sys.stdout.flush()
 
+        #time_acc_func = 0.0
+        #time_acc_total = 0.0
+
         start_time = time.clock()  
         ## Pre-train layer-wise 
         for i in xrange(self.classifier.n_layers):
@@ -103,7 +108,14 @@
             for epoch in xrange(self.hp.pretraining_epochs_per_layer):
                 # go through the training set
                 for batch_index in xrange(self.n_train_batches):
+                    #t1 = time.clock()
                     c = self.classifier.pretrain_functions[i](batch_index)
+                    #t2 = time.clock()
+
+                    #time_acc_func += t2 - t1
+
+                    #if batch_index % 500 == 0:
+                    #    print "acc / total", time_acc_func / (t2 - start_time), time_acc_func
 
                     self.series_mux.append("reconstruction_error", c)