Mercurial > ift6266
diff deep/stacked_dae/v2/stacked_dae.py @ 227:acae439d6572
Ajouté une modification sur stacked_dae qui utilise les nouvelles SeriesTables. Je le met dans le repository pour que mes expériences en cours continuent sans perturbation, et pour que Sylvain puisse récupérer la version actuelle; je fusionnerai à moment donné.
author | fsavard |
---|---|
date | Fri, 12 Mar 2010 10:31:10 -0500 |
parents | |
children | 851e7ad4a143 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v2/stacked_dae.py Fri Mar 12 10:31:10 2010 -0500 @@ -0,0 +1,290 @@ +#!/usr/bin/python +# coding: utf-8 + +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams +import copy + +from utils import update_locals + +# taken from LeDeepNet/daa.py +# has a special case when taking log(0) (defined =0) +# modified to not take the mean anymore +from theano.tensor.xlogx import xlogx, xlogy0 +# it's target*log(output) +def binary_cross_entropy(target, output, sum_axis=1): + XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output)) + return -T.sum(XE, axis=sum_axis) + +class LogisticRegression(object): + def __init__(self, input, n_in, n_out): + # initialize with 0 the weights W as a matrix of shape (n_in, n_out) + self.W = theano.shared( value=numpy.zeros((n_in,n_out), + dtype = theano.config.floatX) ) + # initialize the baises b as a vector of n_out 0s + self.b = theano.shared( value=numpy.zeros((n_out,), + dtype = theano.config.floatX) ) + # compute vector of class-membership probabilities in symbolic form + self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred=T.argmax(self.p_y_given_x, axis=1) + + # list of parameters for this layer + self.params = [self.W, self.b] + + def negative_log_likelihood(self, y): + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + def errors(self, y): + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + +class SigmoidalLayer(object): + def __init__(self, rng, input, n_in, n_out): + self.input = input + + W_values = numpy.asarray( rng.uniform( \ + low = -numpy.sqrt(6./(n_in+n_out)), \ + high = numpy.sqrt(6./(n_in+n_out)), \ + size = (n_in, n_out)), dtype = theano.config.floatX) + self.W = theano.shared(value = W_values) + + b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values) + + self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) + self.params = [self.W, self.b] + + + +class dA(object): + def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ + input = None, shared_W = None, shared_b = None): + self.n_visible = n_visible + self.n_hidden = n_hidden + + # create a Theano random generator that gives symbolic random values + theano_rng = RandomStreams() + + if shared_W != None and shared_b != None : + self.W = shared_W + self.b = shared_b + else: + # initial values for weights and biases + # note : W' was written as `W_prime` and b' as `b_prime` + + # W is initialized with `initial_W` which is uniformely sampled + # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + initial_W = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(n_hidden+n_visible)), \ + high = numpy.sqrt(6./(n_hidden+n_visible)), \ + size = (n_visible, n_hidden)), dtype = theano.config.floatX) + initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) + + + # theano shared variables for weights and biases + self.W = theano.shared(value = initial_W, name = "W") + self.b = theano.shared(value = initial_b, name = "b") + + + initial_b_prime= numpy.zeros(n_visible) + # tied weights, therefore W_prime is W transpose + self.W_prime = self.W.T + self.b_prime = theano.shared(value = initial_b_prime, name = "b'") + + # if no input is given, generate a variable representing the input + if input == None : + # we use a matrix because we expect a minibatch of several examples, + # each example being a row + self.x = T.dmatrix(name = 'input') + else: + self.x = input + # Equation (1) + # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs + # note : first argument of theano.rng.binomial is the shape(size) of + # random numbers that it should produce + # second argument is the number of trials + # third argument is the probability of success of any trial + # + # this will produce an array of 0s and 1s where 1 has a + # probability of 1 - ``corruption_level`` and 0 with + # ``corruption_level`` + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level, dtype=theano.config.floatX) * self.x + # Equation (2) + # note : y is stored as an attribute of the class so that it can be + # used later when stacking dAs. + self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) + # Equation (3) + self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) + # Equation (4) + # note : we sum over the size of a datapoint; if we are using minibatches, + # L will be a vector, with one entry per example in minibatch + #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) + #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1) + + # bypassing z to avoid running to log(0) + z_a = T.dot(self.y, self.W_prime) + self.b_prime + log_sigmoid = T.log(1) - T.log(1+T.exp(-z_a)) + # log(1-sigmoid(z_a)) + log_1_sigmoid = -self.x - T.log(1+T.exp(-z_a)) + self.L = -T.sum( self.x * (log_sigmoid) \ + + (1.0-self.x) * (log_1_sigmoid), axis=1 ) + + # I added this epsilon to avoid getting log(0) and 1/0 in grad + # This means conceptually that there'd be no probability of 0, but that + # doesn't seem to me as important (maybe I'm wrong?). + #eps = 0.00000001 + #eps_1 = 1-eps + #self.L = - T.sum( self.x * T.log(eps + eps_1*self.z) \ + # + (1-self.x)*T.log(eps + eps_1*(1-self.z)), axis=1 ) + # note : L is now a vector, where each element is the cross-entropy cost + # of the reconstruction of the corresponding example of the + # minibatch. We need to compute the average of all these to get + # the cost of the minibatch + self.cost = T.mean(self.L) + + self.params = [ self.W, self.b, self.b_prime ] + + +class SdA(object): + def __init__(self, train_set_x, train_set_y, batch_size, n_ins, + hidden_layers_sizes, n_outs, + corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0): + # Just to make sure those are not modified somewhere else afterwards + hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes) + corruption_levels = copy.deepcopy(corruption_levels) + + update_locals(self, locals()) + + self.layers = [] + self.pretrain_functions = [] + self.params = [] + # MODIF: added this so we also get the b_primes + # (not used for finetuning... still using ".params") + self.all_params = [] + self.n_layers = len(hidden_layers_sizes) + + print "Creating SdA with params:" + print "batch_size", batch_size + print "hidden_layers_sizes", hidden_layers_sizes + print "corruption_levels", corruption_levels + print "n_ins", n_ins + print "n_outs", n_outs + print "pretrain_lr", pretrain_lr + print "finetune_lr", finetune_lr + print "input_divider", input_divider + print "----" + + self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX)) + + if len(hidden_layers_sizes) < 1 : + raiseException (' You must have at least one hidden layer ') + + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + self.x = T.matrix('x') # the data is presented as rasterized images + self.y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + for i in xrange( self.n_layers ): + # construct the sigmoidal layer + + # the size of the input is either the number of hidden units of + # the layer below or the input size if we are on the first layer + if i == 0 : + input_size = n_ins + else: + input_size = hidden_layers_sizes[i-1] + + # the input to this layer is either the activation of the hidden + # layer below or the input of the SdA if you are on the first + # layer + if i == 0 : + layer_input = self.x + else: + layer_input = self.layers[-1].output + + layer = SigmoidalLayer(rng, layer_input, input_size, + hidden_layers_sizes[i] ) + # add the layer to the + self.layers += [layer] + self.params += layer.params + + # Construct a denoising autoencoder that shared weights with this + # layer + dA_layer = dA(input_size, hidden_layers_sizes[i], \ + corruption_level = corruption_levels[0],\ + input = layer_input, \ + shared_W = layer.W, shared_b = layer.b) + + self.all_params += dA_layer.params + + # Construct a function that trains this dA + # compute gradients of layer parameters + gparams = T.grad(dA_layer.cost, dA_layer.params) + # compute the list of updates + updates = {} + for param, gparam in zip(dA_layer.params, gparams): + updates[param] = param - gparam * pretrain_lr + + # create a function that trains the dA + update_fn = theano.function([index], dA_layer.cost, \ + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider}) + # collect this function into a list + self.pretrain_functions += [update_fn] + + + # We now need to add a logistic layer on top of the MLP + self.logLayer = LogisticRegression(\ + input = self.layers[-1].output,\ + n_in = hidden_layers_sizes[-1], n_out = n_outs) + + self.params += self.logLayer.params + self.all_params += self.logLayer.params + # construct a function that implements one step of finetunining + + # compute the cost, defined as the negative log likelihood + cost = self.logLayer.negative_log_likelihood(self.y) + # compute the gradients with respect to the model parameters + gparams = T.grad(cost, self.params) + # compute list of updates + updates = {} + for param,gparam in zip(self.params, gparams): + updates[param] = param - gparam*finetune_lr + + self.finetune = theano.function([index], cost, + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider, + self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) + + # symbolic variable that points to the number of errors made on the + # minibatch given by self.x and self.y + + self.errors = self.logLayer.errors(self.y) + +if __name__ == '__main__': + import sys + args = sys.argv[1:] +