Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/sgd_optimization.py @ 281:a8b92a4a708d
rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Wed, 24 Mar 2010 14:44:41 -0400 |
parents | a0264184684e |
children | 28b628f331b2 |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py Wed Mar 24 14:44:24 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Wed Mar 24 14:44:41 2010 -0400 @@ -95,8 +95,11 @@ for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set batch_index=0 + count=0 + num_files=0 for x,y in dataset.train(self.hp.minibatch_size): c = self.classifier.pretrain_functions[i](x) + count +=1 self.series["reconstruction_error"].append((epoch, batch_index), c) batch_index+=1 @@ -107,11 +110,21 @@ # useful when doing tests if self.max_minibatches and batch_index >= self.max_minibatches: break - - print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c - sys.stdout.flush() + + #When we pass through the data only once (the case with P07) + #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M) + if self.hp.pretraining_epochs_per_layer == 1 and count%819200 == 0: + print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c + num_files+=1 + sys.stdout.flush() + self.series['params'].append((num_files,), self.classifier.all_params) + + #When NIST is used + if self.hp.pretraining_epochs_per_layer > 1: + print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c + sys.stdout.flush() - self.series['params'].append((epoch,), self.classifier.all_params) + self.series['params'].append((epoch,), self.classifier.all_params) end_time = time.clock() @@ -127,14 +140,19 @@ f.close() - def finetune(self,dataset,dataset_test,num_finetune,ind_test): + def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0): + + if special != 0 and special != 1: + sys.exit('Bad value for variable special. Must be in {0,1}') print "STARTING FINETUNING, time = ", datetime.datetime.now() minibatch_size = self.hp.minibatch_size - if ind_test == 0: + if ind_test == 0 or ind_test == 20: nom_test = "NIST" + nom_train="P07" else: nom_test = "P07" + nom_train = "NIST" # create a function to compute the mistakes that are made by the model @@ -183,14 +201,21 @@ minibatch_index = -1 for x,y in dataset.train(minibatch_size): minibatch_index += 1 - cost_ij = self.classifier.finetune(x,y) + if special == 0: + cost_ij = self.classifier.finetune(x,y) + elif special == 1: + cost_ij = self.classifier.finetune2(x,y) total_mb_index += 1 self.series["training_error"].append((epoch, minibatch_index), cost_ij) if (total_mb_index+1) % validation_frequency == 0: - iter = dataset.valid(minibatch_size) + #The validation set is always NIST + if ind_test == 0: + iter=dataset_test.valid(minibatch_size) + else: + iter = dataset.valid(minibatch_size) if self.max_minibatches: iter = itermax(iter, self.max_minibatches) validation_losses = [validate_model(x,y) for x,y in iter] @@ -199,8 +224,8 @@ self.series["validation_error"].\ append((epoch, minibatch_index), this_validation_loss*100.) - print('epoch %i, minibatch %i, validation error %f %%' % \ - (epoch, minibatch_index+1, \ + print('epoch %i, minibatch %i, validation error on %s : %f %%' % \ + (epoch, minibatch_index+1,nom_test, \ this_validation_loss*100.)) @@ -233,16 +258,20 @@ self.series["test_error"].\ append((epoch, minibatch_index), test_score*100.) - print((' epoch %i, minibatch %i, test error of best ' + print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best ' 'model %f %%') % - (epoch, minibatch_index+1, + (epoch, minibatch_index+1,nom_train, test_score*100.)) print((' epoch %i, minibatch %i, test error on dataset %s of best ' 'model %f %%') % (epoch, minibatch_index+1,nom_test, test_score2*100.)) - + + if patience <= total_mb_index: + done_looping = True + break + sys.stdout.flush() # useful when doing tests @@ -251,8 +280,7 @@ self.series['params'].append((epoch,), self.classifier.all_params) - if patience <= total_mb_index: - done_looping = True + if done_looping == True: #To exit completly the fine-tuning break end_time = time.clock() @@ -261,19 +289,45 @@ 'test_score':test_score, 'num_finetuning_epochs':epoch}) - print(('Optimization complete with best validation score of %f %%,' - 'with test performance %f %%') % - (best_validation_loss * 100., test_score*100.)) + print(('\nOptimization complete with best validation score of %f %%,' + 'with test performance %f %% on dataset %s ') % + (best_validation_loss * 100., test_score*100.,nom_train)) print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) + #Save a copy of the parameters in a file to be able to get them in the future + + if special == 1: #To keep a track of the value of the parameters + parameters_finetune=[copy(x.value) for x in self.classifier.params] + f = open('params_finetune_stanford.txt', 'w') + pickle.dump(parameters_finetune,f) + f.close() + + elif ind_test== 0: #To keep a track of the value of the parameters + parameters_finetune=[copy(x.value) for x in self.classifier.params] + f = open('params_finetune_P07.txt', 'w') + pickle.dump(parameters_finetune,f) + f.close() + + elif ind_test== 1: #For the run with 2 finetunes. It will be faster. + parameters_finetune=[copy(x.value) for x in self.classifier.params] + f = open('params_finetune_NIST.txt', 'w') + pickle.dump(parameters_finetune,f) + f.close() + + elif ind_test== 20: #To keep a track of the value of the parameters + parameters_finetune=[copy(x.value) for x in self.classifier.params] + f = open('params_finetune_NIST_then_P07.txt', 'w') + pickle.dump(parameters_finetune,f) + f.close() + #Set parameters like they where right after pre-train - def reload_parameters(self): + def reload_parameters(self,which): #self.parameters_pre=pickle.load('params_pretrain.txt') - f = open('params_pretrain.txt') + f = open(which) self.parameters_pre=pickle.load(f) f.close() for idx,x in enumerate(self.parameters_pre):