Mercurial > ift6266
diff baseline/conv_mlp/convolutional_mlp.py @ 253:a491d3600a77
Derniere version du reseau a convolution
author | Jeremy Eustache <jeremy.eustache@voila.fr> |
---|---|
date | Wed, 17 Mar 2010 10:21:57 -0400 |
parents | 168aae8a6419 |
children | d41fe003fade |
line wrap: on
line diff
--- a/baseline/conv_mlp/convolutional_mlp.py Tue Mar 16 21:24:41 2010 -0400 +++ b/baseline/conv_mlp/convolutional_mlp.py Wed Mar 17 10:21:57 2010 -0400 @@ -26,8 +26,8 @@ import theano.sandbox.softsign import pylearn.datasets.MNIST from pylearn.io import filetensor as ft -from theano.tensor.signal import downsample -from theano.tensor.nnet import conv +from theano.sandbox import conv, downsample +import theano,pylearn.version,ift6266 class LeNetConvPoolLayer(object): @@ -214,7 +214,7 @@ # Dealing with the training set # get the list of training images (x) and their labels (y) - (train_set_x, train_set_y) = (d[:4000,:],labels[:4000]) + (train_set_x, train_set_y) = (d[:200000,:],labels[:200000]) # initialize the list of training minibatches with empty list train_batches = [] for i in xrange(0, len(train_set_x), batch_size): @@ -229,7 +229,7 @@ #print train_batches[500] # Dealing with the validation set - (valid_set_x, valid_set_y) = (d[4000:5000,:],labels[4000:5000]) + (valid_set_x, valid_set_y) = (d[200000:270000,:],labels[200000:270000]) # initialize the list of validation minibatches valid_batches = [] for i in xrange(0, len(valid_set_x), batch_size): @@ -237,17 +237,18 @@ [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] # Dealing with the testing set - (test_set_x, test_set_y) = (d[5000:6000,:],labels[5000:6000]) + (test_set_x, test_set_y) = (d[270000:340000,:],labels[270000:340000]) # initialize the list of testing minibatches test_batches = [] for i in xrange(0, len(test_set_x), batch_size): test_batches = test_batches + \ [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] + return train_batches, valid_batches, test_batches -def evaluate_lenet5(learning_rate=0.1, n_iter=1, batch_size=20, n_kern0=20,n_kern1=50,filter_shape=5,n_layer=3, dataset='mnist.pkl.gz'): +def evaluate_lenet5(learning_rate=0.1, n_iter=200, batch_size=20, n_kern0=20, n_kern1=50, n_layer=3, filter_shape0=5, filter_shape1=5, dataset='mnist.pkl.gz'): rng = numpy.random.RandomState(23455) print 'Before load dataset' @@ -256,6 +257,16 @@ ishape = (32,32) # this is the size of NIST images n_kern2=80 + n_kern3=100 + if n_layer==4: + filter_shape1=3 + filter_shape2=3 + if n_layer==5: + filter_shape0=4 + filter_shape1=2 + filter_shape2=2 + filter_shape3=2 + # allocate symbolic variables for the data x = T.matrix('x') # rasterized images @@ -276,7 +287,7 @@ # 4D output tensor is thus of shape (20,20,14,14) layer0 = LeNetConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size,1,32,32), - filter_shape=(n_kern0,1,filter_shape,filter_shape), poolsize=(2,2)) + filter_shape=(n_kern0,1,filter_shape0,filter_shape0), poolsize=(2,2)) if(n_layer>2): @@ -284,17 +295,17 @@ # filtering reduces the image size to (14-5+1,14-5+1)=(10,10) # maxpooling reduces this further to (10/2,10/2) = (5,5) # 4D output tensor is thus of shape (20,50,5,5) - fshape=(32-filter_shape+1)/2 + fshape0=(32-filter_shape0+1)/2 layer1 = LeNetConvPoolLayer(rng, input=layer0.output, - image_shape=(batch_size,n_kern0,fshape,fshape), - filter_shape=(n_kern1,n_kern0,filter_shape,filter_shape), poolsize=(2,2)) + image_shape=(batch_size,n_kern0,fshape0,fshape0), + filter_shape=(n_kern1,n_kern0,filter_shape1,filter_shape1), poolsize=(2,2)) else: - fshape=(32-filter_shape+1)/2 + fshape0=(32-filter_shape0+1)/2 layer1_input = layer0.output.flatten(2) # construct a fully-connected sigmoidal layer - layer1 = SigmoidalLayer(rng, input=layer1_input,n_in=n_kern0*fshape*fshape, n_out=500) + layer1 = SigmoidalLayer(rng, input=layer1_input,n_in=n_kern0*fshape0*fshape0, n_out=500) layer2 = LogisticRegression(input=layer1.output, n_in=500, n_out=10) cost = layer2.negative_log_likelihood(y) @@ -304,17 +315,46 @@ if(n_layer>3): - fshape=(32-filter_shape+1)/2 - fshape2=(fshape-filter_shape+1)/2 - fshape3=(fshape2-filter_shape+1)/2 + fshape0=(32-filter_shape0+1)/2 + fshape1=(fshape0-filter_shape1+1)/2 layer2 = LeNetConvPoolLayer(rng, input=layer1.output, - image_shape=(batch_size,n_kern1,fshape2,fshape2), - filter_shape=(n_kern2,n_kern1,filter_shape,filter_shape), poolsize=(2,2)) + image_shape=(batch_size,n_kern1,fshape1,fshape1), + filter_shape=(n_kern2,n_kern1,filter_shape2,filter_shape2), poolsize=(2,2)) + + if(n_layer>4): + + + fshape0=(32-filter_shape0+1)/2 + fshape1=(fshape0-filter_shape1+1)/2 + fshape2=(fshape1-filter_shape2+1)/2 + fshape3=(fshape2-filter_shape3+1)/2 + layer3 = LeNetConvPoolLayer(rng, input=layer2.output, + image_shape=(batch_size,n_kern2,fshape2,fshape2), + filter_shape=(n_kern3,n_kern2,filter_shape3,filter_shape3), poolsize=(2,2)) + + layer4_input = layer3.output.flatten(2) + layer4 = SigmoidalLayer(rng, input=layer4_input, + n_in=n_kern3*fshape3*fshape3, n_out=500) + + + layer5 = LogisticRegression(input=layer4.output, n_in=500, n_out=10) + + cost = layer5.negative_log_likelihood(y) + + test_model = theano.function([x,y], layer5.errors(y)) + + params = layer5.params+ layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params + + elif(n_layer>3): + + fshape0=(32-filter_shape0+1)/2 + fshape1=(fshape0-filter_shape1+1)/2 + fshape2=(fshape1-filter_shape2+1)/2 layer3_input = layer2.output.flatten(2) layer3 = SigmoidalLayer(rng, input=layer3_input, - n_in=n_kern2*fshape3*fshape3, n_out=500) + n_in=n_kern2*fshape2*fshape2, n_out=500) layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=10) @@ -328,8 +368,8 @@ elif(n_layer>2): - fshape=(32-filter_shape+1)/2 - fshape2=(fshape-filter_shape+1)/2 + fshape0=(32-filter_shape0+1)/2 + fshape1=(fshape0-filter_shape1+1)/2 # the SigmoidalLayer being fully-connected, it operates on 2D matrices of # shape (batch_size,num_pixels) (i.e matrix of rasterized images). @@ -338,7 +378,7 @@ # construct a fully-connected sigmoidal layer layer2 = SigmoidalLayer(rng, input=layer2_input, - n_in=n_kern1*fshape2*fshape2, n_out=500) + n_in=n_kern1*fshape1*fshape1, n_out=500) # classify the values of the fully-connected sigmoidal layer @@ -462,7 +502,7 @@ def experiment(state, channel): print 'start experiment' - (best_validation_loss, test_score, minutes_trained, iter) = evaluate_lenet5(state.learning_rate, state.n_iter, state.batch_size, state.n_kern0, state.n_kern1, state.filter_shape, state.n_layer) + (best_validation_loss, test_score, minutes_trained, iter) = evaluate_lenet5(state.learning_rate, state.n_iter, state.batch_size, state.n_kern0, state.n_kern1, state.n_layer, state.filter_shape0, state.filter_shape1) print 'end experiment' state.best_validation_loss = best_validation_loss