Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/nist_sda.py @ 238:9fc641d7adda
Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Mon, 15 Mar 2010 13:22:20 -0400 |
parents | ecb69e17950b |
children | 6d49cf134a40 |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/nist_sda.py Mon Mar 15 10:09:50 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/nist_sda.py Mon Mar 15 13:22:20 2010 -0400 @@ -49,6 +49,7 @@ REDUCE_TRAIN_TO = 1000 MAX_FINETUNING_EPOCHS = 2 REDUCE_EVERY = 10 + MINIBATCH_SIZE=20 # Possible values the hyperparameters can take. These are then # combined with produit_cartesien_jobs so we get a list of all @@ -71,7 +72,7 @@ 'hidden_layers_sizes':500, 'corruption_levels':0.2, 'minibatch_size':20, - #'reduce_train_to':10000, + 'reduce_train_to':10000, 'num_hidden_layers':1}) ''' @@ -94,16 +95,18 @@ ## ## print "NIST loaded" ## -## # For test runs, we don't want to use the whole dataset so -## # reduce it to fewer elements if asked to. -## rtt = None -## if state.has_key('reduce_train_to'): -## rtt = state['reduce_train_to'] -## elif REDUCE_TRAIN_TO: -## rtt = REDUCE_TRAIN_TO -## -## if rtt: -## print "Reducing training set to "+str(rtt)+ " examples" + # For test runs, we don't want to use the whole dataset so + # reduce it to fewer elements if asked to. + rtt = None + if state.has_key('reduce_train_to'): + rtt = int(state['reduce_train_to']/state['minibatch_size']) + elif REDUCE_TRAIN_TO: + rtt = int(REDUCE_TRAIN_TO/MINIBATCH_SIZE) + + if rtt: + print "Reducing training set to "+str(rtt*state['minibatch_size'])+ " examples" + else: + rtt=float('inf') #No reduction ## nist.reduce_train_set(rtt) ## ## train,valid,test = nist.get_tvt() @@ -111,7 +114,7 @@ n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) - + series = create_series(state.num_hidden_layers) print "Creating optimizer with state, ", state @@ -120,10 +123,10 @@ n_ins=n_ins, n_outs=n_outs,\ series=series) - optimizer.pretrain(datasets.nist_all) + optimizer.pretrain(datasets.nist_all,rtt) channel.save() - optimizer.finetune(datasets.nist_all) + optimizer.finetune(datasets.nist_all,rtt) channel.save() return channel.COMPLETE