Mercurial > ift6266
diff baseline/mlp/ratio_classes/mlp_nist_ratio.py @ 357:9a7b74927f7d
version mlp modifiée pour la selection du ratio de la classe principale
author | Guillaume Sicard <guitch21@gmail.com> |
---|---|
date | Thu, 22 Apr 2010 00:00:09 -0400 |
parents | |
children | d8129a09ffb1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/baseline/mlp/ratio_classes/mlp_nist_ratio.py Thu Apr 22 00:00:09 2010 -0400 @@ -0,0 +1,438 @@ +# -*- coding: utf-8 -*- +""" +This tutorial introduces the multilayer perceptron using Theano. + + A multilayer perceptron is a logistic regressor where +instead of feeding the input to the logistic regression you insert a +intermidiate layer, called the hidden layer, that has a nonlinear +activation function (usually tanh or sigmoid) . One can use many such +hidden layers making the architecture deep. The tutorial will also tackle +the problem of MNIST digit classification. + +.. math:: + + f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), + +References: + + - textbooks: "Pattern Recognition and Machine Learning" - + Christopher M. Bishop, section 5 + +TODO: recommended preprocessing, lr ranges, regularization ranges (explain + to do lr first, then add regularization) + +""" +__docformat__ = 'restructedtext en' + +import ift6266 +from scripts import setup_batches +import pdb +import numpy + +import theano +import theano.tensor as T +import time +import theano.tensor.nnet +import pylearn +import theano,pylearn.version +from pylearn.io import filetensor as ft + +data_path = '/data/lisa/data/nist/by_class/' + +class MLP(object): + """Multi-Layer Perceptron Class + + A multilayer perceptron is a feedforward artificial neural network model + that has one layer or more of hidden units and nonlinear activations. + Intermidiate layers usually have as activation function thanh or the + sigmoid function while the top layer is a softamx layer. + """ + + + + def __init__(self, input, n_in, n_hidden, n_out,learning_rate): + """Initialize the parameters for the multilayer perceptron + + :param input: symbolic variable that describes the input of the + architecture (one minibatch) + + :param n_in: number of input units, the dimension of the space in + which the datapoints lie + + :param n_hidden: number of hidden units + + :param n_out: number of output units, the dimension of the space in + which the labels lie + + """ + + # initialize the parameters theta = (W1,b1,W2,b2) ; note that this + # example contains only one hidden layer, but one can have as many + # layers as he/she wishes, making the network deeper. The only + # problem making the network deep this way is during learning, + # backpropagation being unable to move the network from the starting + # point towards; this is where pre-training helps, giving a good + # starting point for backpropagation, but more about this in the + # other tutorials + + # `W1` is initialized with `W1_values` which is uniformely sampled + # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + W1_values = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(n_in+n_hidden)), \ + high = numpy.sqrt(6./(n_in+n_hidden)), \ + size = (n_in, n_hidden)), dtype = theano.config.floatX) + # `W2` is initialized with `W2_values` which is uniformely sampled + # from -6./sqrt(n_hidden+n_out) and 6./sqrt(n_hidden+n_out) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + W2_values = numpy.asarray( numpy.random.uniform( + low = -numpy.sqrt(6./(n_hidden+n_out)), \ + high= numpy.sqrt(6./(n_hidden+n_out)),\ + size= (n_hidden, n_out)), dtype = theano.config.floatX) + + self.W1 = theano.shared( value = W1_values ) + self.b1 = theano.shared( value = numpy.zeros((n_hidden,), + dtype= theano.config.floatX)) + self.W2 = theano.shared( value = W2_values ) + self.b2 = theano.shared( value = numpy.zeros((n_out,), + dtype= theano.config.floatX)) + + #include the learning rate in the classifer so + #we can modify it on the fly when we want + lr_value=learning_rate + self.lr=theano.shared(value=lr_value) + # symbolic expression computing the values of the hidden layer + self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) + + + + # symbolic expression computing the values of the top layer + self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred = T.argmax( self.p_y_given_x, axis =1) + self.y_pred_num = T.argmax( self.p_y_given_x[0:9], axis =1) + + + + + # L1 norm ; one regularization option is to enforce L1 norm to + # be small + self.L1 = abs(self.W1).sum() + abs(self.W2).sum() + + # square of L2 norm ; one regularization option is to enforce + # square of L2 norm to be small + self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() + + + + def negative_log_likelihood(self, y): + """Return the mean of the negative log-likelihood of the prediction + of this model under a given target distribution. + + .. math:: + + \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = + \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ + \ell (\theta=\{W,b\}, \mathcal{D}) + + + :param y: corresponds to a vector that gives for each example the + :correct label + """ + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + + + + def errors(self, y): + """Return a float representing the number of errors in the minibatch + over the total number of examples of the minibatch + """ + + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + +def mlp_full_nist( verbose = False,\ + adaptive_lr = 1,\ + train_data = 'all/all_train_data.ft',\ + train_labels = 'all/all_train_labels.ft',\ + test_data = 'all/all_test_data.ft',\ + test_labels = 'all/all_test_labels.ft',\ + learning_rate=0.5,\ + L1_reg = 0.00,\ + L2_reg = 0.0001,\ + nb_max_exemples=1000000,\ + batch_size=20,\ + nb_hidden = 500,\ + nb_targets = 62,\ + tau=1e6,\ + main_class="d",\ + start_ratio=1,\ + end_ratio=1): + + + configuration = [learning_rate,nb_max_exemples,nb_hidden,adaptive_lr] + + #save initial learning rate if classical adaptive lr is used + initial_lr=learning_rate + + total_validation_error_list = [] + total_train_error_list = [] + learning_rate_list=[] + best_training_error=float('inf'); + + # set up batches + batches = setup_batches.Batches() + batches.set_batches(main_class, start_ratio,end_ratio,batch_size,verbose) + + train_batches = batches.get_train_batches() + test_batches = batches.get_test_batches() + validation_batches = batches.get_validation_batches() + + ishape = (32,32) # this is the size of NIST images + + # allocate symbolic variables for the data + x = T.fmatrix() # the data is presented as rasterized images + y = T.lvector() # the labels are presented as 1D vector of + # [long int] labels + + if verbose==True: + print 'finished parsing the data' + # construct the logistic regression class + classifier = MLP( input=x.reshape((batch_size,32*32)),\ + n_in=32*32,\ + n_hidden=nb_hidden,\ + n_out=nb_targets, + learning_rate=learning_rate) + + + + + # the cost we minimize during training is the negative log likelihood of + # the model plus the regularization terms (L1 and L2); cost is expressed + # here symbolically + cost = classifier.negative_log_likelihood(y) \ + + L1_reg * classifier.L1 \ + + L2_reg * classifier.L2_sqr + + # compiling a theano function that computes the mistakes that are made by + # the model on a minibatch + test_model = theano.function([x,y], classifier.errors(y)) + + # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) + g_W1 = T.grad(cost, classifier.W1) + g_b1 = T.grad(cost, classifier.b1) + g_W2 = T.grad(cost, classifier.W2) + g_b2 = T.grad(cost, classifier.b2) + + # specify how to update the parameters of the model as a dictionary + updates = \ + { classifier.W1: classifier.W1 - classifier.lr*g_W1 \ + , classifier.b1: classifier.b1 - classifier.lr*g_b1 \ + , classifier.W2: classifier.W2 - classifier.lr*g_W2 \ + , classifier.b2: classifier.b2 - classifier.lr*g_b2 } + + # compiling a theano function `train_model` that returns the cost, but in + # the same time updates the parameter of the model based on the rules + # defined in `updates` + train_model = theano.function([x, y], cost, updates = updates ) + n_minibatches = len(train_batches) + + + + + + + #conditions for stopping the adaptation: + #1) we have reached nb_max_exemples (this is rounded up to be a multiple of the train size) + #2) validation error is going up twice in a row(probable overfitting) + + # This means we no longer stop on slow convergence as low learning rates stopped + # too fast. + + # no longer relevant + patience =nb_max_exemples/batch_size + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = n_minibatches/4 + + + + + best_params = None + best_validation_loss = float('inf') + best_iter = 0 + test_score = 0. + start_time = time.clock() + n_iter = nb_max_exemples/batch_size # nb of max times we are allowed to run through all exemples + n_iter = n_iter/n_minibatches + 1 #round up + n_iter=max(1,n_iter) # run at least once on short debug call + time_n=0 #in unit of exemples + + + + if verbose == True: + print 'looping at most %d times through the data set' %n_iter + for iter in xrange(n_iter* n_minibatches): + + # get epoch and minibatch index + epoch = iter / n_minibatches + minibatch_index = iter % n_minibatches + + + if adaptive_lr==2: + classifier.lr.value = tau*initial_lr/(tau+time_n) + + # get the minibatches corresponding to `iter` modulo + # `len(train_batches)` + x,y = train_batches[ minibatch_index ] + # convert to float + x_float = x/255.0 + cost_ij = train_model(x_float,y) + + if (iter+1) % validation_frequency == 0: + # compute zero-one loss on validation set + + this_validation_loss = 0. + for x,y in validation_batches: + # sum up the errors for each minibatch + x_float = x/255.0 + this_validation_loss += test_model(x_float,y) + # get the average by dividing with the number of minibatches + this_validation_loss /= len(validation_batches) + #save the validation loss + total_validation_error_list.append(this_validation_loss) + + #get the training error rate + this_train_loss=0 + for x,y in train_batches: + # sum up the errors for each minibatch + x_float = x/255.0 + this_train_loss += test_model(x_float,y) + # get the average by dividing with the number of minibatches + this_train_loss /= len(train_batches) + #save the validation loss + total_train_error_list.append(this_train_loss) + if(this_train_loss<best_training_error): + best_training_error=this_train_loss + + if verbose == True: + print('epoch %i, minibatch %i/%i, validation error %f, training error %f %%' % \ + (epoch, minibatch_index+1, n_minibatches, \ + this_validation_loss*100.,this_train_loss*100)) + print 'learning rate = %f' %classifier.lr.value + print 'time = %i' %time_n + + + #save the learning rate + learning_rate_list.append(classifier.lr.value) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + # reset patience if we are going down again + # so we continue exploring + patience=nb_max_exemples/batch_size + # test it on the test set + test_score = 0. + for x,y in test_batches: + x_float=x/255.0 + test_score += test_model(x_float,y) + test_score /= len(test_batches) + if verbose == True: + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, n_minibatches, + test_score*100.)) + + # if the validation error is going up, we are overfitting (or oscillating) + # stop converging but run at least to next validation + # to check overfitting or ocsillation + # the saved weights of the model will be a bit off in that case + elif this_validation_loss >= best_validation_loss: + #calculate the test error at this point and exit + # test it on the test set + # however, if adaptive_lr is true, try reducing the lr to + # get us out of an oscilliation + if adaptive_lr==1: + classifier.lr.value=classifier.lr.value/2.0 + + test_score = 0. + #cap the patience so we are allowed one more validation error + #calculation before aborting + patience = iter+validation_frequency+1 + for x,y in test_batches: + x_float=x/255.0 + test_score += test_model(x_float,y) + test_score /= len(test_batches) + if verbose == True: + print ' validation error is going up, possibly stopping soon' + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, n_minibatches, + test_score*100.)) + + + + + if iter>patience: + print 'we have diverged' + break + + + time_n= time_n + batch_size + end_time = time.clock() + if verbose == True: + print(('Optimization complete. Best validation score of %f %% ' + 'obtained at iteration %i, with test performance %f %%') % + (best_validation_loss * 100., best_iter, test_score*100.)) + print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + print iter + + #save the model and the weights + numpy.savez('model.npy', config=configuration, W1=classifier.W1.value,W2=classifier.W2.value, b1=classifier.b1.value,b2=classifier.b2.value) + numpy.savez('results.npy',config=configuration,total_train_error_list=total_train_error_list,total_validation_error_list=total_validation_error_list,\ + learning_rate_list=learning_rate_list) + + return (best_training_error*100.0,best_validation_loss * 100.,test_score*100.,best_iter*batch_size,(end_time-start_time)/60) + + +if __name__ == '__main__': + mlp_full_nist(True) + +def jobman_mlp_full_nist(state,channel): + (train_error,validation_error,test_error,nb_exemples,time)=mlp_full_nist(learning_rate=state.learning_rate,\ + nb_max_exemples=state.nb_max_exemples,\ + nb_hidden=state.nb_hidden,\ + adaptive_lr=state.adaptive_lr,\ + tau=state.tau,\ + main_class=state.main_class,\ + start_ratio=state.start_ratio,\ + end_ratio=state.end_ratio) + state.train_error=train_error + state.validation_error=validation_error + state.test_error=test_error + state.nb_exemples=nb_exemples + state.time=time + return channel.COMPLETE + + \ No newline at end of file