Mercurial > ift6266
diff deep/stacked_dae/v_youssouf/config.py @ 371:8cf52a1c8055
initial commit of sda with 36 classes
author | youssouf |
---|---|
date | Sun, 25 Apr 2010 12:31:22 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v_youssouf/config.py Sun Apr 25 12:31:22 2010 -0400 @@ -0,0 +1,98 @@ +''' +These are parameters used by nist_sda_retrieve.py. They'll end up as globals in there. + +Rename this file to config.py and configure as needed. +DON'T add the renamed file to the repository, as others might use it +without realizing it, with dire consequences. +''' + +# Set this to True when you want to run cluster tests, ie. you want +# to run on the cluster, many jobs, but want to reduce the training +# set size and the number of epochs, so you know everything runs +# fine on the cluster. +# Set this PRIOR to inserting your test jobs in the DB. +TEST_CONFIG = False + +NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' +NIST_ALL_TRAIN_SIZE = 649081 +# valid et test =82587 82587 + +#Path of two pre-train done earlier +PATH_NIST = '/u/pannetis/IFT6266/ift6266/deep/stacked_dae/v_sylvain/NIST_big' +PATH_P07 = '/u/pannetis/IFT6266/ift6266/deep/stacked_dae/v_sylvain/P07_big/' + +''' +# change "sandbox" when you're ready +JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_db/pannetis_SDA_retrieve' +EXPERIMENT_PATH = "ift6266.deep.stacked_dae.v_sylvain.nist_sda_retrieve.jobman_entrypoint" +''' + +##Pour lancer des travaux sur le cluster: (il faut etre ou se trouve les fichiers) +##python nist_sda_retrieve.py jobman_insert +##dbidispatch --condor --repeat_jobs=2 jobman sql 'postgres://ift6266h10@gershwin/ift6266h10_db/pannetis_finetuningSDA0' . #C'est le path dans config.py + +##Pour lancer sur GPU sur boltzmann (changer device=gpuX pour X le bon assigne) +##THEANO_FLAGS=floatX=float32,device=gpu2 python nist_sda_retrieve.py test_jobman_entrypoint + + +# reduce training set to that many examples +REDUCE_TRAIN_TO = None +# that's a max, it usually doesn't get to that point +MAX_FINETUNING_EPOCHS = 1000 +# number of minibatches before taking means for valid error etc. +REDUCE_EVERY = 100 +#Set the finetune dataset +FINETUNE_SET=0 +#Set the pretrain dataset used. 0: NIST, 1:P07 +PRETRAIN_CHOICE=0 + + +if TEST_CONFIG: + REDUCE_TRAIN_TO = 1000 + MAX_FINETUNING_EPOCHS = 2 + REDUCE_EVERY = 10 + +# select detection or classification +DETECTION_MODE = 0 +# consider maj and minuscule as the same +REDUCE_LABEL = 1 + + +# This is to configure insertion of jobs on the cluster. +# Possible values the hyperparameters can take. These are then +# combined with produit_cartesien_jobs so we get a list of all +# possible combinations, each one resulting in a job inserted +# in the jobman DB. +JOB_VALS = {'pretraining_lr': [0.1],#, 0.001],#, 0.0001], + 'pretraining_epochs_per_layer': [10], + 'hidden_layers_sizes': [800], + 'corruption_levels': [0.2], + 'minibatch_size': [100], + 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], + 'max_finetuning_epochs_P07':[1], + 'finetuning_lr':[0.01], #0.001 was very bad, so we leave it out + 'num_hidden_layers':[4], + 'finetune_set':[-1], + 'pretrain_choice':[0,1] + } + +# Just useful for tests... minimal number of epochs +# (This is used when running a single job, locally, when +# calling ./nist_sda.py test_jobman_entrypoint +DEFAULT_HP_NIST = {'finetuning_lr':0.05, + 'pretraining_lr':0.01, + 'pretraining_epochs_per_layer':15, + 'max_finetuning_epochs':MAX_FINETUNING_EPOCHS, + #'max_finetuning_epochs':1, + 'max_finetuning_epochs_P07':7, + 'hidden_layers_sizes':1500, + 'corruption_levels':0.2, + 'minibatch_size':100, + #'reduce_train_to':2000, + 'decrease_lr':1, + 'num_hidden_layers':4, + 'finetune_set':2, + 'pretrain_choice':1, + 'detection_mode':DETECTION_MODE, + 'reduce_label':REDUCE_LABEL} +