Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/sgd_optimization.py @ 389:88cb95007670
Ajout d'une option finetune amelioree pour PNIST07
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Tue, 27 Apr 2010 08:43:04 -0400 |
parents | 8117c0e70db9 |
children | 5e11dda78995 |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py Tue Apr 27 08:42:43 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Tue Apr 27 08:43:04 2010 -0400 @@ -166,10 +166,14 @@ if ind_test == 0 or ind_test == 20: nom_test = "NIST" nom_train="P07" - elif ind_test == 2: + elif ind_test == 30: nom_train = "PNIST07" nom_test = "NIST" nom_test2 = "P07" + elif ind_test == 31: + nom_train = "NIST" + nom_test = "PNIST07" + nom_test2 = "P07" else: nom_test = "P07" nom_train = "NIST" @@ -218,7 +222,7 @@ minibatch_index = 0 parameters_finetune=[] - if ind_test == 21: + if ind_test == 21 | ind_test == 31: learning_rate = self.hp.finetuning_lr / 10.0 else: learning_rate = self.hp.finetuning_lr #The initial finetune lr @@ -242,7 +246,7 @@ if (total_mb_index+1) % validation_frequency == 0: #minibatch_index += 1 #The validation set is always NIST (we want the model to be good on NIST) - if ind_test == 0 | ind_test == 20 | ind_test == 2: + if ind_test == 0 | ind_test == 20 | ind_test == 30: iter=dataset_test.valid(minibatch_size,bufsize=buffersize) else: iter = dataset.valid(minibatch_size,bufsize=buffersize) @@ -321,7 +325,7 @@ break if decrease == 1: - if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20 | ind_test == 2: + if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20 | ind_test == 30 | (ind_test == 31 & epoch % 100 == 0): learning_rate /= 2 #divide the learning rate by 2 for each new epoch of P07 (or 100 of NIST) self.series['params'].append((epoch,), self.classifier.all_params) @@ -367,10 +371,14 @@ f = open('params_finetune_P07_then_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() - elif ind_test == 2: + elif ind_test == 30: f = open('params_finetune_PNIST07.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() + elif ind_test == 31: + f = open('params_finetune_PNIST07_then_NIST.txt', 'w') + cPickle.dump(parameters_finetune,f,protocol=-1) + f.close() #Set parameters like they where right after pre-train or finetune