Mercurial > ift6266
diff baseline/mlp/mlp_nist.py @ 445:868f82777839
added jobman all test + val error and sigmoid output
author | xaviermuller |
---|---|
date | Tue, 04 May 2010 11:17:27 -0400 |
parents | 3dba84c0fbc1 |
children |
line wrap: on
line diff
--- a/baseline/mlp/mlp_nist.py Mon May 03 18:43:24 2010 -0400 +++ b/baseline/mlp/mlp_nist.py Tue May 04 11:17:27 2010 -0400 @@ -49,7 +49,7 @@ - def __init__(self, input, n_in, n_hidden, n_out,learning_rate): + def __init__(self, input, n_in, n_hidden, n_out,learning_rate,detection_mode): """Initialize the parameters for the multilayer perceptron :param input: symbolic variable that describes the input of the @@ -108,12 +108,21 @@ # symbolic expression computing the values of the top layer - self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) + if(detection_mode==0): + self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) + else: + self.p_y_given_x= T.nnet.sigmoid(T.dot(self.hidden, self.W2)+self.b2) + + + + # self.y_out_sig= T.sigmoid(T.dot(self.hidden, self.W2)+self.b2) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred = T.argmax( self.p_y_given_x, axis =1) - self.y_pred_num = T.argmax( self.p_y_given_x[0:9], axis =1) + + # self.y_pred_sig = T.argmax( self.y_out_sig, axis =1) + @@ -143,6 +152,12 @@ :correct label """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + + def cross_entropy(self, y): + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]+T.sum(T.log(1-self.p_y_given_x), axis=1)-T.log(1-self.p_y_given_x)[T.arange(y.shape[0]),y]) + + @@ -210,12 +225,22 @@ vmaj_error_count=0.0 vmaj_exemple_count=0.0 + nbc_error_count=0.0 + vnbc_error_count=0.0 + if data_set==0: - dataset=datasets.nist_all() + print 'using nist' + dataset=datasets.nist_all() elif data_set==1: + print 'using p07' dataset=datasets.nist_P07() + elif data_set==2: + print 'using pnist' + dataset=datasets.PNIST07() + + @@ -243,7 +268,12 @@ wanted_class=yt[0] if(predicted_class!=wanted_class): total_error_count = total_error_count +1 - + + + if(not(predicted_class==wanted_class or ( (((predicted_class+26)==wanted_class) or ((predicted_class-26)==wanted_class)) and wanted_class>9) )): + nbc_error_count = nbc_error_count +1 + + #treat digit error if(wanted_class<10): nb_exemple_count=nb_exemple_count + 1 @@ -294,6 +324,9 @@ if(predicted_class!=wanted_class): vtotal_error_count = vtotal_error_count +1 + if(not(predicted_class==wanted_class or ( (((predicted_class+26)==wanted_class) or ((predicted_class-26)==wanted_class)) and wanted_class>9) )): + vnbc_error_count = nbc_error_count +1 + #treat digit error if(wanted_class<10): vnb_exemple_count=vnb_exemple_count + 1 @@ -326,20 +359,63 @@ print (('char error = %f') % ((char_error_count/char_exemple_count)*100.0)) print (('min error = %f') % ((min_error_count/min_exemple_count)*100.0)) print (('maj error = %f') % ((maj_error_count/maj_exemple_count)*100.0)) + print (('36 error = %f') % ((nbc_error_count/total_exemple_count)*100.0)) print (('valid total error = %f') % ((vtotal_error_count/vtotal_exemple_count)*100.0)) print (('valid number error = %f') % ((vnb_error_count/vnb_exemple_count)*100.0)) print (('valid char error = %f') % ((vchar_error_count/vchar_exemple_count)*100.0)) print (('valid min error = %f') % ((vmin_error_count/vmin_exemple_count)*100.0)) print (('valid maj error = %f') % ((vmaj_error_count/vmaj_exemple_count)*100.0)) + print (('valid 36 error = %f') % ((vnbc_error_count/vtotal_exemple_count)*100.0)) - print ((' num total = %d,%d') % (total_exemple_count,total_error_count)) - print ((' num nb = %d,%d') % (nb_exemple_count,nb_error_count)) - print ((' num min = %d,%d') % (min_exemple_count,min_error_count)) - print ((' num maj = %d,%d') % (maj_exemple_count,maj_error_count)) - print ((' num char = %d,%d') % (char_exemple_count,char_error_count)) - return (total_error_count/total_exemple_count)*100.0 + print (('num total = %d,%d') % (total_exemple_count,total_error_count)) + print (('num nb = %d,%d') % (nb_exemple_count,nb_error_count)) + print (('num min = %d,%d') % (min_exemple_count,min_error_count)) + print (('num maj = %d,%d') % (maj_exemple_count,maj_error_count)) + print (('num char = %d,%d') % (char_exemple_count,char_error_count)) + + + + total_error_count/=total_exemple_count + nb_error_count/=nb_exemple_count + char_error_count/=char_exemple_count + min_error_count/=min_exemple_count + maj_error_count/=maj_exemple_count + nbc_error_count/=total_exemple_count + + vtotal_error_count/=vtotal_exemple_count + vnb_error_count/=vnb_exemple_count + vchar_error_count/=vchar_exemple_count + vmin_error_count/=vmin_exemple_count + vmaj_error_count/=vmaj_exemple_count + vnbc_error_count/=vtotal_exemple_count + + + return (total_error_count,nb_error_count,char_error_count,min_error_count,maj_error_count,nbc_error_count,\ + vtotal_error_count,vnb_error_count,vchar_error_count,vmin_error_count,vmaj_error_count,vnbc_error_count) + +def jobman_get_error(state,channel): + (all_t_error,nb_t_error,char_t_error,min_t_error,maj_t_error,nbc_t_error, + all_v_error,nb_v_error,char_v_error,min_v_error,maj_v_error,nbc_v_error)=mlp_get_nist_error(data_set=state.data_set,\ + model_name=state.model_name) + + state.all_t_error=all_t_error*100.0 + state.nb_t_error=nb_t_error*100.0 + state.char_t_error=char_t_error*100.0 + state.min_t_error=min_t_error*100.0 + state.maj_t_error=maj_t_error*100.0 + state.nbc_t_error=nbc_t_error*100.0 + + state.all_v_error=all_v_error*100.0 + state.nb_v_error=nb_v_error*100.0 + state.char_v_error=char_v_error*100.0 + state.min_v_error=min_v_error*100.0 + state.maj_v_error=maj_v_error*100.0 + state.nbc_v_error=nbc_v_error*100.0 + + pylearn.version.record_versions(state,[theano,ift6266,pylearn]) + return channel.COMPLETE @@ -358,7 +434,8 @@ tau=1e6,\ lr_t2_factor=0.5,\ init_model=0,\ - channel=0): + channel=0,\ + detection_mode=0): if channel!=0: @@ -403,7 +480,8 @@ n_in=32*32,\ n_hidden=nb_hidden,\ n_out=nb_targets, - learning_rate=learning_rate) + learning_rate=learning_rate, + detection_mode=detection_mode) # check if we want to initialise the weights with a previously calculated model @@ -421,9 +499,15 @@ # the cost we minimize during training is the negative log likelihood of # the model plus the regularization terms (L1 and L2); cost is expressed # here symbolically - cost = classifier.negative_log_likelihood(y) \ + if(detection_mode==0): + cost = classifier.negative_log_likelihood(y) \ + L1_reg * classifier.L1 \ + L2_reg * classifier.L2_sqr + else: + cost = classifier.cross_entropy(y) \ + + L1_reg * classifier.L1 \ + + L2_reg * classifier.L2_sqr + # compiling a theano function that computes the mistakes that are made by # the model on a minibatch @@ -504,7 +588,6 @@ #train model cost_ij = train_model(x,y) - if (minibatch_index) % validation_frequency == 0: #save the current learning rate learning_rate_list.append(classifier.lr.value) @@ -645,6 +728,7 @@ lr_t2_factor=state.lr_t2_factor, data_set=state.data_set, init_model=state.init_model, + detection_mode = state.detection_mode,\ channel=channel) state.train_error=train_error state.validation_error=validation_error