Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/nist_sda.py @ 319:7a12d2c3d06b
finetune NIST+P07 change pour P07+NIST, les experiences n'ont pas ete concluentes
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Fri, 02 Apr 2010 14:53:32 -0400 |
parents | 8de3bef71458 |
children | 4306796d60a8 |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/nist_sda.py Fri Apr 02 09:12:40 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/nist_sda.py Fri Apr 02 14:53:32 2010 -0400 @@ -124,10 +124,10 @@ optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() if finetune_choice == 2: - print('\n\n\tfinetune with NIST followed by P07\n\n') + print('\n\n\tfinetune with P07 followed by NIST\n\n') optimizer.reload_parameters('params_pretrain.txt') + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) - optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() if finetune_choice == 3: print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ @@ -148,10 +148,10 @@ optimizer.reload_parameters('params_pretrain.txt') optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() - print('\n\n\tfinetune with NIST (done earlier) followed by P07 (written here)\n\n') + print('\n\n\tfinetune with P07 (done earlier) followed by NIST (written here)\n\n') sys.stdout.flush() - optimizer.reload_parameters('params_finetune_NIST.txt') - optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.reload_parameters('params_finetune_P07.txt') + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) channel.save() print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ All hidden units output are input of the logistic regression\n\n')