Mercurial > ift6266
diff deep/deep_mlp/mlp.py @ 626:75dbbe409578
Added code for deep mlp, experiment code to go along with it. Also added code I used to filter the P07 / PNIST07 datasets to keep only digits.
author | fsavard |
---|---|
date | Wed, 16 Mar 2011 13:43:32 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/deep_mlp/mlp.py Wed Mar 16 13:43:32 2011 -0400 @@ -0,0 +1,210 @@ +__docformat__ = 'restructedtext en' + +import numpy, time, cPickle, gzip, sys, os + +import theano +import theano.tensor as T + +from logistic_sgd import LogisticRegression, load_data + +class HiddenLayer(object): + def __init__(self, rng, input, n_in, n_out, activation = T.tanh): + print "Creating HiddenLayer with params" + print locals() + + self.input = input + + W_values = numpy.asarray( rng.uniform( + low = - numpy.sqrt(6./(n_in+n_out)), + high = numpy.sqrt(6./(n_in+n_out)), + size = (n_in, n_out)), dtype = theano.config.floatX) + if activation == theano.tensor.nnet.sigmoid: + W_values *= 4 + + self.W = theano.shared(value = W_values, name ='W') + + b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values, name ='b') + + self.output = activation(T.dot(input, self.W) + self.b) + + self.params = [self.W, self.b] + + +class MLP(object): + def __init__(self, rng, input, n_in, n_hidden_layers, n_hidden, n_out): + print "Creating MLP with params" + print locals() + + self.input = input + + self.hiddenLayers = [] + + last_input = input + last_n_out = n_in + for i in range(n_hidden_layers): + self.hiddenLayers.append(\ + HiddenLayer(rng = rng, input = last_input, + n_in = last_n_out, + n_out = n_hidden, + activation = T.tanh)) + last_input = self.hiddenLayers[-1].output + last_n_out = n_hidden + + self.logRegressionLayer = LogisticRegression( + input = self.hiddenLayers[-1].output, + n_in = n_hidden, + n_out = n_out) + + self.L1 = abs(self.logRegressionLayer.W).sum() + for h in self.hiddenLayers: + self.L1 += abs(h.W).sum() + + self.L2_sqr = (self.logRegressionLayer.W**2).sum() + for h in self.hiddenLayers: + self.L2_sqr += (h.W**2).sum() + + self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood + + self.errors = self.logRegressionLayer.errors + + self.params = [] + for hl in self.hiddenLayers: + self.params += hl.params + self.params += self.logRegressionLayer.params + + +def test_mlp( learning_rate=0.01, L1_reg = 0.00, L2_reg = 0.0001, n_epochs=1000, + dataset = '../data/mnist.pkl.gz', batch_size = 20): + datasets = load_data(dataset) + + train_set_x, train_set_y = datasets[0] + valid_set_x, valid_set_y = datasets[1] + test_set_x , test_set_y = datasets[2] + + n_train_batches = train_set_x.value.shape[0] / batch_size + n_valid_batches = valid_set_x.value.shape[0] / batch_size + n_test_batches = test_set_x.value.shape[0] / batch_size + + ###################### + # BUILD ACTUAL MODEL # + ###################### + print '... building the model' + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + x = T.matrix('x') # the data is presented as rasterized images + y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + rng = numpy.random.RandomState(1234) + + # construct the MLP class + classifier = MLP( rng = rng, input=x, n_in=28*28, n_hidden = 500, n_out=10) + + # the cost we minimize during training is the negative log likelihood of + # the model plus the regularization terms (L1 and L2); cost is expressed + # here symbolically + cost = classifier.negative_log_likelihood(y) \ + + L1_reg * classifier.L1 \ + + L2_reg * classifier.L2_sqr + + # compiling a Theano function that computes the mistakes that are made + # by the model on a minibatch + test_model = theano.function(inputs = [index], + outputs = classifier.errors(y), + givens={ + x:test_set_x[index*batch_size:(index+1)*batch_size], + y:test_set_y[index*batch_size:(index+1)*batch_size]}) + + validate_model = theano.function(inputs = [index], + outputs = classifier.errors(y), + givens={ + x:valid_set_x[index*batch_size:(index+1)*batch_size], + y:valid_set_y[index*batch_size:(index+1)*batch_size]}) + + # compute the gradient of cost with respect to theta (sotred in params) + # the resulting gradients will be stored in a list gparams + gparams = [] + for param in classifier.params: + gparam = T.grad(cost, param) + gparams.append(gparam) + + + # specify how to update the parameters of the model as a dictionary + updates = {} + # given two list the zip A = [ a1,a2,a3,a4] and B = [b1,b2,b3,b4] of + # same length, zip generates a list C of same size, where each element + # is a pair formed from the two lists : + # C = [ (a1,b1), (a2,b2), (a3,b3) , (a4,b4) ] + for param, gparam in zip(classifier.params, gparams): + updates[param] = param - learning_rate*gparam + + # compiling a Theano function `train_model` that returns the cost, but + # in the same time updates the parameter of the model based on the rules + # defined in `updates` + train_model =theano.function( inputs = [index], outputs = cost, + updates = updates, + givens={ + x:train_set_x[index*batch_size:(index+1)*batch_size], + y:train_set_y[index*batch_size:(index+1)*batch_size]}) + + ############### + # TRAIN MODEL # + ############### + print '... training' + + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(n_train_batches,patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + + best_params = None + best_validation_loss = float('inf') + best_iter = 0 + test_score = 0. + start_time = time.clock() + + epoch = 0 + done_looping = False + + while (epoch < n_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(n_train_batches): + + minibatch_avg_cost = train_model(minibatch_index) + # iteration number + iter = epoch * n_train_batches + minibatch_index + + if (iter+1) % validation_frequency == 0: + # compute zero-one loss on validation set + validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1,n_train_batches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + best_validation_loss = this_validation_loss + # test it on the test set + + test_losses = [test_model(i) for i in xrange(n_test_batches)] + test_score = numpy.mean(test_losses) + +