Mercurial > ift6266
diff deep/convolutional_dae/stacked_convolutional_dae.py @ 262:716c99f4eb3a
merge
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Wed, 17 Mar 2010 16:41:51 -0400 |
parents | 0c0f0b3f6a93 |
children |
line wrap: on
line diff
--- a/deep/convolutional_dae/stacked_convolutional_dae.py Wed Mar 17 16:41:16 2010 -0400 +++ b/deep/convolutional_dae/stacked_convolutional_dae.py Wed Mar 17 16:41:51 2010 -0400 @@ -4,24 +4,21 @@ import sys import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams -import theano.sandbox.softsign +#import theano.sandbox.softsign from theano.tensor.signal import downsample from theano.tensor.nnet import conv -sys.path.append('../../../') - from ift6266 import datasets from ift6266.baseline.log_reg.log_reg import LogisticRegression batch_size = 100 - class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): self.input = input - + W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ @@ -37,7 +34,8 @@ class dA_conv(object): def __init__(self, input, filter_shape, corruption_level = 0.1, - shared_W = None, shared_b = None, image_shape = None): + shared_W = None, shared_b = None, image_shape = None, + poolsize = (2,2)): theano_rng = RandomStreams() @@ -69,18 +67,12 @@ self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape, - image_shape=image_shape, - unroll_kern=4,unroll_batch=4, - border_mode='valid') - + image_shape=image_shape, border_mode='valid') self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x')) - - da_filter_shape = [ filter_shape[1], filter_shape[0], filter_shape[2],\ - filter_shape[3] ] - da_image_shape = [ batch_size, filter_shape[0], image_shape[2]-filter_shape[2]+1, image_shape[3]-filter_shape[3]+1 ] - #import pdb; pdb.set_trace() + da_filter_shape = [ filter_shape[1], filter_shape[0], + filter_shape[2], filter_shape[3] ] initial_W_prime = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(fan_in+fan_out)), \ high = numpy.sqrt(6./(fan_in+fan_out)), \ @@ -88,9 +80,7 @@ self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime") conv2_out = conv.conv2d(self.y, self.W_prime, - filter_shape = da_filter_shape,\ - image_shape = da_image_shape, \ - unroll_kern=4,unroll_batch=4, \ + filter_shape = da_filter_shape, border_mode='full') self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale @@ -115,8 +105,7 @@ self.b = theano.shared(value=b_values) conv_out = conv.conv2d(input, self.W, - filter_shape=filter_shape, image_shape=image_shape, - unroll_kern=4,unroll_batch=4) + filter_shape=filter_shape, image_shape=image_shape) fan_in = numpy.prod(filter_shape[1:]) @@ -137,7 +126,7 @@ class SdA(): def __init__(self, input, n_ins_mlp, conv_hidden_layers_sizes, mlp_hidden_layers_sizes, corruption_levels, rng, n_out, - pretrain_lr, finetune_lr): + pretrain_lr, finetune_lr, img_shape): self.layers = [] self.pretrain_functions = [] @@ -154,7 +143,7 @@ max_poolsize=conv_hidden_layers_sizes[i][2] if i == 0 : - layer_input=self.x.reshape((batch_size, 1, 32, 32)) + layer_input=self.x.reshape((self.x.shape[0], 1) + img_shape) else: layer_input=self.layers[-1].output @@ -170,7 +159,7 @@ da_layer = dA_conv(corruption_level = corruption_levels[0], input = layer_input, shared_W = layer.W, shared_b = layer.b, - filter_shape=filter_shape, + filter_shape = filter_shape, image_shape = image_shape ) gparams = T.grad(da_layer.cost, da_layer.params) @@ -221,13 +210,13 @@ self.errors = self.logLayer.errors(self.y) -def sgd_optimization_mnist( learning_rate=0.1, pretraining_epochs = 0, \ - pretrain_lr = 0.1, training_epochs = 1000, \ - kernels = [ [2,5,5] , [2,3,3] ], mlp_layers=[500], \ - corruption_levels = [ 0.2, 0.2, 0.2], batch_size = batch_size, \ - max_pool_layers = [ [2,2] , [2,2] ], \ - dataset=datasets.nist_digits): - +def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 1, + pretrain_lr = 0.1, training_epochs = 1000, + kernels = [[4,5,5], [4,3,3]], mlp_layers=[500], + corruption_levels = [0.2, 0.2, 0.2], + batch_size = batch_size, img_shape=(28, 28), + max_pool_layers = [[2,2], [2,2]], + dataset=datasets.mnist(5000)): # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch @@ -235,31 +224,32 @@ y = T.ivector('y') # the labels are presented as 1d vector of # [int] labels - layer0_input = x.reshape((batch_size,1,32,32)) + layer0_input = x.reshape((x.shape[0],1)+img_shape) rng = numpy.random.RandomState(1234) conv_layers=[] - init_layer = [ [ kernels[0][0],1,kernels[0][1],kernels[0][2] ],\ - [ batch_size , 1, 32, 32 ], - max_pool_layers[0] ] + init_layer = [[kernels[0][0],1,kernels[0][1],kernels[0][2]], + None, # do not specify the batch size since it can + # change for the last one and then theano will + # crash. + max_pool_layers[0]] conv_layers.append(init_layer) - conv_n_out = int((32-kernels[0][2]+1)/max_pool_layers[0][0]) - print init_layer[1] - + conv_n_out = (img_shape[0]-kernels[0][2]+1)/max_pool_layers[0][0] + for i in range(1,len(kernels)): - layer = [ [ kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2] ],\ - [ batch_size, kernels[i-1][0],conv_n_out,conv_n_out ], - max_pool_layers[i] ] + layer = [[kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2]], + None, # same comment as for init_layer + max_pool_layers[i] ] conv_layers.append(layer) - conv_n_out = int( (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0]) - print layer [1] + conv_n_out = (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0] + network = SdA(input = layer0_input, n_ins_mlp = kernels[-1][0]*conv_n_out**2, conv_hidden_layers_sizes = conv_layers, mlp_hidden_layers_sizes = mlp_layers, - corruption_levels = corruption_levels , n_out = 62, - rng = rng , pretrain_lr = pretrain_lr , - finetune_lr = learning_rate ) + corruption_levels = corruption_levels, n_out = 62, + rng = rng , pretrain_lr = pretrain_lr, + finetune_lr = learning_rate, img_shape=img_shape) test_model = theano.function([network.x, network.y], network.errors) @@ -267,9 +257,7 @@ for i in xrange(len(network.layers)-len(mlp_layers)): for epoch in xrange(pretraining_epochs): for x, y in dataset.train(batch_size): - if x.shape[0] == batch_size: - c = network.pretrain_functions[i](x) - + c = network.pretrain_functions[i](x) print 'pre-training convolution layer %i, epoch %d, cost '%(i,epoch), c patience = 10000 # look as this many examples regardless @@ -291,16 +279,12 @@ while (epoch < training_epochs) and (not done_looping): epoch = epoch + 1 for x, y in dataset.train(batch_size): - if x.shape[0] != batch_size: - continue + cost_ij = network.finetune(x, y) iter += 1 if iter % validation_frequency == 0: - validation_losses = [] - for xv, yv in dataset.valid(batch_size): - if xv.shape[0] == batch_size: - validation_losses.append(test_model(xv, yv)) + validation_losses = [test_model(xv, yv) for xv, yv in dataset.valid(batch_size)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, iter %i, validation error %f %%' % \ (epoch, iter, this_validation_loss*100.)) @@ -318,10 +302,7 @@ best_iter = iter # test it on the test set - test_losses=[] - for xt, yt in dataset.test(batch_size): - if xt.shape[0] == batch_size: - test_losses.append(test_model(xt, yt)) + test_losses = [test_model(xt, yt) for xt, yt in dataset.test(batch_size)] test_score = numpy.mean(test_losses) print((' epoch %i, iter %i, test error of best ' 'model %f %%') %