Mercurial > ift6266
diff scripts/stacked_dae/sgd_optimization.py @ 139:7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
author | fsavard |
---|---|
date | Mon, 22 Feb 2010 13:38:25 -0500 |
parents | 5c79a2557f2f |
children |
line wrap: on
line diff
--- a/scripts/stacked_dae/sgd_optimization.py Sun Feb 21 17:30:38 2010 -0600 +++ b/scripts/stacked_dae/sgd_optimization.py Mon Feb 22 13:38:25 2010 -0500 @@ -1,165 +1,270 @@ #!/usr/bin/python # coding: utf-8 -# Generic SdA optimization loop, adapted slightly from the deeplearning.net tutorial +# Generic SdA optimization loop, adapted from the deeplearning.net tutorial import numpy import theano import time import theano.tensor as T +import copy +import sys from jobman import DD +import jobman, jobman.sql from stacked_dae import SdA -def sgd_optimization(dataset, hyperparameters, n_ins, n_outs): - hp = hyperparameters +def shared_dataset(data_xy): + data_x, data_y = data_xy + #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) + #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) + #shared_y = T.cast(shared_y, 'int32') + shared_x = theano.shared(data_x) + shared_y = theano.shared(data_y) + return shared_x, shared_y - printout_frequency = 1000 - - train_set, valid_set, test_set = dataset +class SdaSgdOptimizer: + def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0,\ + job_tree=False, results_db=None,\ + experiment="",\ + num_hidden_layers_to_try=[1,2,3], \ + finetuning_lr_to_try=[0.1, 0.01, 0.001, 0.0001, 0.00001]): - def shared_dataset(data_xy): - data_x, data_y = data_xy - shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) - shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) - return shared_x, T.cast(shared_y, 'int32') + self.dataset = dataset + self.hp = copy.copy(hyperparameters) + self.n_ins = n_ins + self.n_outs = n_outs + self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) - test_set_x, test_set_y = shared_dataset(test_set) - valid_set_x, valid_set_y = shared_dataset(valid_set) - train_set_x, train_set_y = shared_dataset(train_set) + self.job_tree = job_tree + self.results_db = results_db + self.experiment = experiment + if self.job_tree: + assert(not results_db is None) + # these hp should not be there, so we insert default values + # we use 3 hidden layers as we'll iterate through 1,2,3 + self.hp.finetuning_lr = 0.1 # dummy value, will be replaced anyway + cl = self.hp.corruption_levels + nh = self.hp.hidden_layers_sizes + self.hp.corruption_levels = [cl,cl,cl] + self.hp.hidden_layers_sizes = [nh,nh,nh] + + self.num_hidden_layers_to_try = num_hidden_layers_to_try + self.finetuning_lr_to_try = finetuning_lr_to_try + + self.printout_frequency = 1000 - # compute number of minibatches for training, validation and testing - n_train_batches = train_set_x.value.shape[0] / hp.minibatch_size - n_valid_batches = valid_set_x.value.shape[0] / hp.minibatch_size - n_test_batches = test_set_x.value.shape[0] / hp.minibatch_size + self.rng = numpy.random.RandomState(1234) + + self.init_datasets() + self.init_classifier() + + def init_datasets(self): + print "init_datasets" + train_set, valid_set, test_set = self.dataset + self.test_set_x, self.test_set_y = shared_dataset(test_set) + self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) + self.train_set_x, self.train_set_y = shared_dataset(train_set) + + # compute number of minibatches for training, validation and testing + self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size + self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size + self.n_test_batches = self.test_set_x.value.shape[0] / self.hp.minibatch_size - # allocate symbolic variables for the data - index = T.lscalar() # index to a [mini]batch - - # construct the stacked denoising autoencoder class - classifier = SdA( train_set_x=train_set_x, train_set_y = train_set_y,\ - batch_size = hp.minibatch_size, n_ins= n_ins, \ - hidden_layers_sizes = hp.hidden_layers_sizes, n_outs=10, \ - corruption_levels = hp.corruption_levels,\ - rng = numpy.random.RandomState(1234),\ - pretrain_lr = hp.pretraining_lr, finetune_lr = hp.finetuning_lr ) + def init_classifier(self): + print "Constructing classifier" + # construct the stacked denoising autoencoder class + self.classifier = SdA( \ + train_set_x= self.train_set_x, \ + train_set_y = self.train_set_y,\ + batch_size = self.hp.minibatch_size, \ + n_ins= self.n_ins, \ + hidden_layers_sizes = self.hp.hidden_layers_sizes, \ + n_outs = self.n_outs, \ + corruption_levels = self.hp.corruption_levels,\ + rng = self.rng,\ + pretrain_lr = self.hp.pretraining_lr, \ + finetune_lr = self.hp.finetuning_lr,\ + input_divider = self.input_divider ) - printout_acc = 0.0 + def train(self): + self.pretrain() + if not self.job_tree: + # if job_tree is True, finetuning was already performed + self.finetune() + + def pretrain(self): + print "STARTING PRETRAINING" - start_time = time.clock() - ## Pre-train layer-wise - for i in xrange(classifier.n_layers): - # go through pretraining epochs - for epoch in xrange(hp.pretraining_epochs_per_layer): - # go through the training set - for batch_index in xrange(n_train_batches): - c = classifier.pretrain_functions[i](batch_index) + printout_acc = 0.0 + last_error = 0.0 + + start_time = time.clock() + ## Pre-train layer-wise + for i in xrange(self.classifier.n_layers): + # go through pretraining epochs + for epoch in xrange(self.hp.pretraining_epochs_per_layer): + # go through the training set + for batch_index in xrange(self.n_train_batches): + c = self.classifier.pretrain_functions[i](batch_index) - print c + printout_acc += c / self.printout_frequency + if (batch_index+1) % self.printout_frequency == 0: + print batch_index, "reconstruction cost avg=", printout_acc + last_error = printout_acc + printout_acc = 0.0 + + print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c + + self.job_splitter(i+1, time.clock()-start_time, last_error) + + end_time = time.clock() + + print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) + + # Save time by reusing intermediate results + def job_splitter(self, current_pretraining_layer, pretraining_time, last_error): + + state_copy = None + original_classifier = None + + if self.job_tree and current_pretraining_layer in self.num_hidden_layers_to_try: + for lr in self.finetuning_lr_to_try: + sys.stdout.flush() + sys.stderr.flush() + + state_copy = copy.copy(self.hp) - printout_acc += c / printout_frequency - if (batch_index+1) % printout_frequency == 0: - print batch_index, "reconstruction cost avg=", printout_acc - printout_acc = 0.0 - - print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c - - end_time = time.clock() + self.hp.update({'num_hidden_layers':current_pretraining_layer, \ + 'finetuning_lr':lr,\ + 'pretraining_time':pretraining_time,\ + 'last_reconstruction_error':last_error}) - print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) - # Fine-tune the entire model + original_classifier = self.classifier + print "ORIGINAL CLASSIFIER MEANS",original_classifier.get_params_means() + self.classifier = SdA.copy_reusing_lower_layers(original_classifier, current_pretraining_layer, new_finetuning_lr=lr) + + self.finetune() + + self.insert_finished_job() + + print "NEW CLASSIFIER MEANS AFTERWARDS",self.classifier.get_params_means() + print "ORIGINAL CLASSIFIER MEANS AFTERWARDS",original_classifier.get_params_means() + self.classifier = original_classifier + self.hp = state_copy + + def insert_finished_job(self): + job = copy.copy(self.hp) + job[jobman.sql.STATUS] = jobman.sql.DONE + job[jobman.sql.EXPERIMENT] = self.experiment - minibatch_size = hp.minibatch_size + # don,t try to store arrays in db + job['hidden_layers_sizes'] = job.hidden_layers_sizes[0] + job['corruption_levels'] = job.corruption_levels[0] + + print "Will insert finished job", job + jobman.sql.insert_dict(jobman.flatten(job), self.results_db) + + def finetune(self): + print "STARTING FINETUNING" - # create a function to compute the mistakes that are made by the model - # on the validation set, or testing set - test_model = theano.function([index], classifier.errors, - givens = { - classifier.x: test_set_x[index*minibatch_size:(index+1)*minibatch_size], - classifier.y: test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + index = T.lscalar() # index to a [mini]batch + minibatch_size = self.hp.minibatch_size - validate_model = theano.function([index], classifier.errors, - givens = { - classifier.x: valid_set_x[index*minibatch_size:(index+1)*minibatch_size], - classifier.y: valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + # create a function to compute the mistakes that are made by the model + # on the validation set, or testing set + test_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, + self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + validate_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, + self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) - # early-stopping parameters - patience = 10000 # look as this many examples regardless - patience_increase = 2. # wait this much longer when a new best is - # found - improvement_threshold = 0.995 # a relative improvement of this much is - # considered significant - validation_frequency = min(n_train_batches, patience/2) - # go through this many - # minibatche before checking the network - # on the validation set; in this case we - # check every epoch + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2. # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(self.n_train_batches, patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch - best_params = None - best_validation_loss = float('inf') - test_score = 0. - start_time = time.clock() + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() - done_looping = False - epoch = 0 + done_looping = False + epoch = 0 - printout_acc = 0.0 + printout_acc = 0.0 - print "----- START FINETUNING -----" + if not self.hp.has_key('max_finetuning_epochs'): + self.hp.max_finetuning_epochs = 1000 - while (epoch < hp.max_finetuning_epochs) and (not done_looping): - epoch = epoch + 1 - for minibatch_index in xrange(n_train_batches): + while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(self.n_train_batches): - cost_ij = classifier.finetune(minibatch_index) - iter = epoch * n_train_batches + minibatch_index + cost_ij = self.classifier.finetune(minibatch_index) + iter = epoch * self.n_train_batches + minibatch_index - printout_acc += cost_ij / float(printout_frequency * minibatch_size) - if (iter+1) % printout_frequency == 0: - print iter, "cost avg=", printout_acc - printout_acc = 0.0 + printout_acc += cost_ij / float(self.printout_frequency * minibatch_size) + if (iter+1) % self.printout_frequency == 0: + print iter, "cost avg=", printout_acc + printout_acc = 0.0 - if (iter+1) % validation_frequency == 0: - - validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] - this_validation_loss = numpy.mean(validation_losses) - print('epoch %i, minibatch %i/%i, validation error %f %%' % \ - (epoch, minibatch_index+1, n_train_batches, \ - this_validation_loss*100.)) + if (iter+1) % validation_frequency == 0: + + validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, self.n_train_batches, \ + this_validation_loss*100.)) - # if we got the best validation score until now - if this_validation_loss < best_validation_loss: + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: - #improve patience if loss improvement is good enough - if this_validation_loss < best_validation_loss * \ - improvement_threshold : - patience = max(patience, iter * patience_increase) + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) - # save best validation score and iteration number - best_validation_loss = this_validation_loss - best_iter = iter + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter - # test it on the test set - test_losses = [test_model(i) for i in xrange(n_test_batches)] - test_score = numpy.mean(test_losses) - print((' epoch %i, minibatch %i/%i, test error of best ' - 'model %f %%') % - (epoch, minibatch_index+1, n_train_batches, - test_score*100.)) + # test it on the test set + test_losses = [test_model(i) for i in xrange(self.n_test_batches)] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, self.n_train_batches, + test_score*100.)) - if patience <= iter : + if patience <= iter : done_looping = True break - end_time = time.clock() - print(('Optimization complete with best validation score of %f %%,' - 'with test performance %f %%') % - - (best_validation_loss * 100., test_score*100.)) - print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + end_time = time.clock() + self.hp.update({'finetuning_time':end_time-start_time,\ + 'best_validation_error':best_validation_loss,\ + 'test_score':test_score, + 'num_finetuning_epochs':epoch}) + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) +