Mercurial > ift6266
diff scripts/stacked_dae.py @ 119:4f37755d301b
Refait stacked_dae.py en utilisant le dataset complet shared (juste reparti à 0 à partir du code du tutoriel), et préparé pour utiliser NIST (pas testé)
author | fsavard |
---|---|
date | Wed, 17 Feb 2010 17:06:54 -0500 |
parents | 0b4080394f2c |
children |
line wrap: on
line diff
--- a/scripts/stacked_dae.py Wed Feb 17 16:25:44 2010 -0500 +++ b/scripts/stacked_dae.py Wed Feb 17 17:06:54 2010 -0500 @@ -1,29 +1,17 @@ #!/usr/bin/python # coding: utf-8 -# Code for stacked denoising autoencoder -# Tests with MNIST -# TODO: adapt for NIST -# Based almost entirely on deeplearning.net tutorial, modifications by -# François Savard +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams +import os.path -# Base LogisticRegression, SigmoidalLayer, dA, SdA code taken -# from the deeplearning.net tutorial. Refactored a bit. -# Changes (mainly): -# - splitted initialization in smaller methods -# - removed the "givens" thing involving an index in the whole dataset -# (to allow flexibility in how data is inputted... not necessarily one big tensor) -# - changed the "driver" a lot, altough for the moment the same logic is used +import gzip +import cPickle -import time -import theano -import theano.tensor as T -import theano.tensor.nnet -from theano.tensor.shared_randomstreams import RandomStreams -import numpy, numpy.random - -from pylearn.datasets import MNIST - +MNIST_LOCATION = '/u/savardf/datasets/mnist.pkl.gz' # from pylearn codebase def update_locals(obj, dct): @@ -31,33 +19,33 @@ del dct['self'] obj.__dict__.update(dct) - class LogisticRegression(object): def __init__(self, input, n_in, n_out): # initialize with 0 the weights W as a matrix of shape (n_in, n_out) - self.W = theano.shared(value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX), - name='W') + self.W = theano.shared( value=numpy.zeros((n_in,n_out), + dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s - self.b = theano.shared(value=numpy.zeros((n_out,), dtype = theano.config.floatX), - name='b') - + self.b = theano.shared( value=numpy.zeros((n_out,), + dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) - + # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) + # list of parameters for this layer self.params = [self.W, self.b] def negative_log_likelihood(self, y): - return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) + # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 @@ -84,87 +72,88 @@ self.params = [self.W, self.b] + class dA(object): - def __init__(self, n_visible= 784, n_hidden= 500, \ - corruption_level = 0.1, input = None, \ - shared_W = None, shared_b = None): - update_locals(self, locals()) - - self.init_randomizer() - self.init_params() - self.init_functions() - - def init_randomizer(self): - # create a Theano random generator that gives symbolic random values - self.theano_rng = RandomStreams() - # create a numpy random generator - self.numpy_rng = numpy.random.RandomState() + def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ + input = None, shared_W = None, shared_b = None): + self.n_visible = n_visible + self.n_hidden = n_hidden + + # create a Theano random generator that gives symbolic random values + theano_rng = RandomStreams() + + if shared_W != None and shared_b != None : + self.W = shared_W + self.b = shared_b + else: + # initial values for weights and biases + # note : W' was written as `W_prime` and b' as `b_prime` - def init_params(self): - if self.shared_W != None and self.shared_b != None : - self.W = self.shared_W - self.b = self.shared_b - else: - # initial values for weights and biases - # note : W' was written as `W_prime` and b' as `b_prime` - - # W is initialized with `initial_W` which is uniformely sampled - # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) - # the output of uniform if converted using asarray to dtype - # theano.config.floatX so that the code is runable on GPU - initial_W = numpy.asarray( self.numpy_rng.uniform( \ - low = -numpy.sqrt(6./(n_hidden+n_visible)), \ - high = numpy.sqrt(6./(n_hidden+n_visible)), \ - size = (n_visible, n_hidden)), dtype = theano.config.floatX) - initial_b = numpy.zeros(n_hidden) - - # theano shared variables for weights and biases - self.W = theano.shared(value = initial_W, name = "W") - self.b = theano.shared(value = initial_b, name = "b") + # W is initialized with `initial_W` which is uniformely sampled + # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + initial_W = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(n_hidden+n_visible)), \ + high = numpy.sqrt(6./(n_hidden+n_visible)), \ + size = (n_visible, n_hidden)), dtype = theano.config.floatX) + initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) + + + # theano shared variables for weights and biases + self.W = theano.shared(value = initial_W, name = "W") + self.b = theano.shared(value = initial_b, name = "b") + + + initial_b_prime= numpy.zeros(n_visible) + # tied weights, therefore W_prime is W transpose + self.W_prime = self.W.T + self.b_prime = theano.shared(value = initial_b_prime, name = "b'") - initial_b_prime= numpy.zeros(self.n_visible) - # tied weights, therefore W_prime is W transpose - self.W_prime = self.W.T - self.b_prime = theano.shared(value = initial_b_prime, name = "b'") - - def init_functions(self): - # if no input is given, generate a variable representing the input - if self.input == None : - # we use a matrix because we expect a minibatch of several examples, - # each example being a row - self.x = T.dmatrix(name = 'input') - else: - self.x = self.input + # if no input is given, generate a variable representing the input + if input == None : + # we use a matrix because we expect a minibatch of several examples, + # each example being a row + self.x = T.dmatrix(name = 'input') + else: + self.x = input + # Equation (1) + # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs + # note : first argument of theano.rng.binomial is the shape(size) of + # random numbers that it should produce + # second argument is the number of trials + # third argument is the probability of success of any trial + # + # this will produce an array of 0s and 1s where 1 has a + # probability of 1 - ``corruption_level`` and 0 with + # ``corruption_level`` + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x + # Equation (2) + # note : y is stored as an attribute of the class so that it can be + # used later when stacking dAs. + self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) + # Equation (3) + self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) + # Equation (4) + # note : we sum over the size of a datapoint; if we are using minibatches, + # L will be a vector, with one entry per example in minibatch + self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) + # note : L is now a vector, where each element is the cross-entropy cost + # of the reconstruction of the corresponding example of the + # minibatch. We need to compute the average of all these to get + # the cost of the minibatch + self.cost = T.mean(self.L) - # keep 90% of the inputs the same and zero-out randomly selected subset of - # 10% of the inputs - # note : first argument of theano.rng.binomial is the shape(size) of - # random numbers that it should produce - # second argument is the number of trials - # third argument is the probability of success of any trial - # - # this will produce an array of 0s and 1s where 1 has a - # probability of 1 - ``corruption_level`` and 0 with - # ``corruption_level`` - self.tilde_x = self.theano_rng.binomial(self.x.shape, 1, 1-self.corruption_level) * self.x - # using tied weights - self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W) + self.b) - self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) - self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) - # note : L is now a vector, where each element is the cross-entropy cost - # of the reconstruction of the corresponding example of the - # minibatch. We need to compute the average of all these to get - # the cost of the minibatch - self.cost = T.mean(self.L) + self.params = [ self.W, self.b, self.b_prime ] + + + - self.params = [ self.W, self.b, self.b_prime ] - -class SdA(): - def __init__(self, batch_size, n_ins, - hidden_layers_sizes, n_outs, - corruption_levels, rng, pretrain_lr, finetune_lr): - update_locals(self, locals()) - +class SdA(object): + def __init__(self, train_set_x, train_set_y, batch_size, n_ins, + hidden_layers_sizes, n_outs, + corruption_levels, rng, pretrain_lr, finetune_lr): + self.layers = [] self.pretrain_functions = [] self.params = [] @@ -173,250 +162,295 @@ if len(hidden_layers_sizes) < 1 : raiseException (' You must have at least one hidden layer ') - # allocate symbolic variables for the data - self.x = T.matrix('x') # the data is presented as rasterized images - self.y = T.ivector('y') # the labels are presented as 1D vector of - # [int] labels - self.create_layers() - self.init_finetuning() + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + self.x = T.matrix('x') # the data is presented as rasterized images + self.y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels - def create_layers(self): for i in xrange( self.n_layers ): # construct the sigmoidal layer - # the size of the input is either the number of hidden units of + # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0 : - input_size = self.n_ins + input_size = n_ins else: - input_size = self.hidden_layers_sizes[i-1] + input_size = hidden_layers_sizes[i-1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer - if i == 0 : + if i == 0 : layer_input = self.x else: layer_input = self.layers[-1].output - layer = SigmoidalLayer(self.rng, layer_input, input_size, - self.hidden_layers_sizes[i] ) - # add the layer to the + layer = SigmoidalLayer(rng, layer_input, input_size, + hidden_layers_sizes[i] ) + # add the layer to the self.layers += [layer] self.params += layer.params - + # Construct a denoising autoencoder that shared weights with this # layer - dA_layer = dA(input_size, self.hidden_layers_sizes[i], \ - corruption_level = self.corruption_levels[0],\ + dA_layer = dA(input_size, hidden_layers_sizes[i], \ + corruption_level = corruption_levels[0],\ input = layer_input, \ shared_W = layer.W, shared_b = layer.b) - - self.init_updates_for_layer(dA_layer) + + # Construct a function that trains this dA + # compute gradients of layer parameters + gparams = T.grad(dA_layer.cost, dA_layer.params) + # compute the list of updates + updates = {} + for param, gparam in zip(dA_layer.params, gparams): + updates[param] = param - gparam * pretrain_lr + + # create a function that trains the dA + update_fn = theano.function([index], dA_layer.cost, \ + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size]}) + # collect this function into a list + self.pretrain_functions += [update_fn] - def init_updates_for_layer(self, dA_layer): - # Construct a function that trains this dA - # compute gradients of layer parameters - gparams = T.grad(dA_layer.cost, dA_layer.params) - # compute the list of updates - updates = {} - for param, gparam in zip(dA_layer.params, gparams): - updates[param] = param - gparam * self.pretrain_lr - - # create a function that trains the dA - update_fn = theano.function([self.x], dA_layer.cost, \ - updates = updates) - - # collect this function into a list - self.pretrain_functions += [update_fn] - - def init_finetuning(self): + # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression(\ input = self.layers[-1].output,\ - n_in = self.hidden_layers_sizes[-1], n_out = self.n_outs) + n_in = hidden_layers_sizes[-1], n_out = n_outs) self.params += self.logLayer.params # construct a function that implements one step of finetunining - # compute the cost, defined as the negative log likelihood + # compute the cost, defined as the negative log likelihood cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters gparams = T.grad(cost, self.params) # compute list of updates updates = {} for param,gparam in zip(self.params, gparams): - updates[param] = param - gparam*self.finetune_lr - - self.finetune = theano.function([self.x, self.y], cost, - updates = updates) + updates[param] = param - gparam*finetune_lr + + self.finetune = theano.function([index], cost, + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size], + self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) -class MnistIterators: - def __init__(self, minibatch_size): - self.minibatch_size = minibatch_size +class Hyperparameters: + def __init__(self, dict): + self.__dict__.update(dict) - self.mnist = MNIST.first_1k() +def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 2, \ + pretrain_lr = 0.1, training_epochs = 5, \ + dataset='mnist.pkl.gz'): + # Load the dataset + f = gzip.open(dataset,'rb') + # this gives us train, valid, test (each with .x, .y) + dataset = cPickle.load(f) + f.close() + + n_ins = 28*28 + n_outs = 10 + + hyperparameters = Hyperparameters({'finetuning_lr':learning_rate, + 'pretraining_lr':pretrain_lr, + 'pretraining_epochs_per_layer':pretraining_epochs, + 'max_finetuning_epochs':training_epochs, + 'hidden_layers_sizes':[1000,1000,1000], + 'corruption_levels':[0.2,0.2,0.2], + 'minibatch_size':20}) - self.len_train = len(self.mnist.train.x) - self.len_valid = len(self.mnist.valid.x) - self.len_test = len(self.mnist.test.x) + sgd_optimization(dataset, hyperparameters, n_ins, n_outs) + +class NIST: + def __init__(self, minibatch_size, basepath=='/data/lisa/data/nist/by_class/all'): + self.minibatch_size = minibatch_size + self.basepath = basepath + + self.train = [None, None] + self.test = [None, None] + + self.load_train_test() - def train_x_batches(self): - idx = 0 - while idx < len(self.mnist.train.x): - yield self.mnist.train.x[idx:idx+self.minibatch_size] - idx += self.minibatch_size + self.valid = [None, None] + self.split_train_valid() + + def set_filenames(self): + self.train_files = ['all_train_data.ft', + 'all_train_labels.ft'] + + self.test_files = ['all_test_data.ft', + 'all_test_labels.ft'] + + def load_train_test(self): + self.load_data_labels(self.train_files, self.train) + self.load_data_labels(self.test_files, self.test) - def train_xy_batches(self): - idx = 0 - while idx < len(self.mnist.train.x): - mb_x = self.mnist.train.x[idx:idx+self.minibatch_size] - mb_y = self.mnist.train.y[idx:idx+self.minibatch_size] - yield mb_x, mb_y - idx += self.minibatch_size + def load_data_labels(self, filenames, pair): + for i, fn in enumerate(filenames): + f = open(fn) + pair[i] = ft.read(os.path.join(self.base_path, fn)) + f.close() + + def split_train_valid(self): + test_len = len(self.test[0]) + + new_train_x = self.train[0][:-test_len] + new_train_y = self.train[1][:-test_len] + + self.valid[0] = self.train[0][-test_len:] + self.valid[1] = self.train[1][-test_len:] + + self.train[0] = new_train_x + self.train[1] = new_train_y + +def sgd_optimization_nist(dataset_dir='/data/lisa/data/nist'): + pass + +def sgd_optimization(dataset, hyperparameters, n_ins, n_outs): + hp = hyperparameters + + train_set, valid_set, test_set = dataset - def valid_xy_batches(self): - idx = 0 - while idx < len(self.mnist.valid.x): - mb_x = self.mnist.valid.x[idx:idx+self.minibatch_size] - mb_y = self.mnist.valid.y[idx:idx+self.minibatch_size] - yield mb_x, mb_y - idx += self.minibatch_size + def shared_dataset(data_xy): + data_x, data_y = data_xy + shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) + shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) + return shared_x, T.cast(shared_y, 'int32') + + test_set_x, test_set_y = shared_dataset(test_set) + valid_set_x, valid_set_y = shared_dataset(valid_set) + train_set_x, train_set_y = shared_dataset(train_set) + + # compute number of minibatches for training, validation and testing + n_train_batches = train_set_x.value.shape[0] / hp.minibatch_size + n_valid_batches = valid_set_x.value.shape[0] / hp.minibatch_size + n_test_batches = test_set_x.value.shape[0] / hp.minibatch_size + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + + # construct the stacked denoising autoencoder class + classifier = SdA( train_set_x=train_set_x, train_set_y = train_set_y,\ + batch_size = hp.minibatch_size, n_ins= n_ins, \ + hidden_layers_sizes = hp.hidden_layers_sizes, n_outs=10, \ + corruption_levels = hp.corruption_levels,\ + rng = numpy.random.RandomState(1234),\ + pretrain_lr = hp.pretraining_lr, finetune_lr = hp.finetuning_lr ) -class MnistTrainingDriver: - def __init__(self, rng=numpy.random): - self.rng = rng - - self.init_SdA() + start_time = time.clock() + ## Pre-train layer-wise + for i in xrange(classifier.n_layers): + # go through pretraining epochs + for epoch in xrange(hp.pretraining_epochs_per_layer): + # go through the training set + for batch_index in xrange(n_train_batches): + c = classifier.pretrain_functions[i](batch_index) + print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c + + end_time = time.clock() - def init_SdA(self): - # Hyperparam - hidden_layers_sizes = [1000, 1000, 1000] - n_outs = 10 - corruption_levels = [0.2, 0.2, 0.2] - minibatch_size = 10 - pretrain_lr = 0.001 - finetune_lr = 0.001 + print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) + # Fine-tune the entire model - update_locals(self, locals()) - - self.mnist = MnistIterators(minibatch_size) + minibatch_size = hp.minibatch_size - # construct the stacked denoising autoencoder class - self.classifier = SdA( batch_size = minibatch_size, \ - n_ins=28*28, \ - hidden_layers_sizes = hidden_layers_sizes, \ - n_outs=n_outs, \ - corruption_levels = corruption_levels,\ - rng = self.rng,\ - pretrain_lr = pretrain_lr, \ - finetune_lr = finetune_lr) + # create a function to compute the mistakes that are made by the model + # on the validation set, or testing set + test_model = theano.function([index], classifier.errors, + givens = { + classifier.x: test_set_x[index*minibatch_size:(index+1)*minibatch_size], + classifier.y: test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) - def compute_validation_error(self): - validation_error = 0.0 - - count = 0 - for mb_x, mb_y in self.mnist.valid_xy_batches(): - validation_error += self.classifier.errors(mb_x, mb_y) - count += 1 + validate_model = theano.function([index], classifier.errors, + givens = { + classifier.x: valid_set_x[index*minibatch_size:(index+1)*minibatch_size], + classifier.y: valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) - return float(validation_error) / count - def pretrain(self): - pretraining_epochs = 20 - - for layer_idx, update_fn in enumerate(self.classifier.pretrain_functions): - for epoch in xrange(pretraining_epochs): - # go through the training set - cost_acc = 0.0 - for i, mb_x in enumerate(self.mnist.train_x_batches()): - cost_acc += update_fn(mb_x) - - if i % 100 == 0: - print i, "avg err = ", cost_acc / 100.0 - cost_acc = 0.0 - print 'Pre-training layer %d, epoch %d' % (layer_idx, epoch) - - def finetune(self): - max_training_epochs = 1000 + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2. # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(n_train_batches, patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch - n_train_batches = self.mnist.len_train / self.minibatch_size + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + + done_looping = False + epoch = 0 + + while (epoch < hp.max_finetuning_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(n_train_batches): + + cost_ij = classifier.finetune(minibatch_index) + iter = epoch * n_train_batches + minibatch_index + + if (iter+1) % validation_frequency == 0: + + validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, n_train_batches, \ + this_validation_loss*100.)) - # early-stopping parameters - patience = 10000 # look as this many examples regardless - patience_increase = 2. # wait this much longer when a new best is - # found - improvement_threshold = 0.995 # a relative improvement of this much is - # considered significant - validation_frequency = min(n_train_batches, patience/2) - # go through this many - # minibatche before checking the network - # on the validation set; in this case we - # check every epoch - - - # TODO: use this - best_params = None - best_validation_loss = float('inf') - test_score = 0. - start_time = time.clock() - - done_looping = False - epoch = 0 - - while (epoch < max_training_epochs) and (not done_looping): - epoch = epoch + 1 - for minibatch_index, (mb_x, mb_y) in enumerate(self.mnist.train_xy_batches()): - cost_ij = classifier.finetune(mb_x, mb_y) - iter = epoch * n_train_batches + minibatch_index - - if (iter+1) % validation_frequency == 0: - this_validation_loss = self.compute_validation_error() - print('epoch %i, minibatch %i/%i, validation error %f %%' % \ - (epoch, minibatch_index+1, n_train_batches, \ - this_validation_loss*100.)) - - # if we got the best validation score until now - if this_validation_loss < best_validation_loss: - - #improve patience if loss improvement is good enough - if this_validation_loss < best_validation_loss * \ - improvement_threshold : - patience = max(patience, iter * patience_increase) - print "Improving patience" - - # save best validation score and iteration number - best_validation_loss = this_validation_loss - best_iter = iter - - # test it on the test set - #test_losses = [test_model(i) for i in xrange(n_test_batches)] - #test_score = numpy.mean(test_losses) - #print((' epoch %i, minibatch %i/%i, test error of best ' - # 'model %f %%') % - # (epoch, minibatch_index+1, n_train_batches, - # test_score*100.)) - - - if patience <= iter : + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [test_model(i) for i in xrange(n_test_batches)] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, n_train_batches, + test_score*100.)) + + + if patience <= iter : done_looping = True break -def train(): - driver = MnistTrainingDriver() - start_time = time.clock() - driver.pretrain() - print "PRETRAINING DONE. STARTING FINETUNING." - driver.finetune() end_time = time.clock() + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + if __name__ == '__main__': - train() + import sys + args = sys.argv[1:] + if len(args) > 0 and args[0] == "jobman_add": + jobman_add() + else: + sgd_optimization_mnist(dataset=MNIST_LOCATION)