Mercurial > ift6266
diff code_tutoriel/convolutional_mlp.py @ 165:4bc5eeec6394
Updating the tutorial code to the latest revisions.
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 13:55:27 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/code_tutoriel/convolutional_mlp.py Fri Feb 26 13:55:27 2010 -0500 @@ -0,0 +1,292 @@ +""" +This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a +convolutional neural network, good for classifying images. This tutorial shows how to build the +architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST +results. + + +This implementation simplifies the model in the following ways: + + - LeNetConvPool doesn't implement location-specific gain and bias parameters + - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. + - Digit classification is implemented with a logistic regression rather than an RBF network + - LeNet5 was not fully-connected convolutions at second layer + +References: + - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document + Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. + http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf +""" + +import numpy, time, cPickle, gzip + +import theano +import theano.tensor as T +from theano.tensor.signal import downsample +from theano.tensor.nnet import conv + +from logistic_sgd import LogisticRegression, load_data +from mlp import HiddenLayer + + +class LeNetConvPoolLayer(object): + """Pool Layer of a convolutional network """ + + def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)): + """ + Allocate a LeNetConvPoolLayer with shared variable internal parameters. + + :type rng: numpy.random.RandomState + :param rng: a random number generator used to initialize weights + + :type input: theano.tensor.dtensor4 + :param input: symbolic image tensor, of shape image_shape + + :type filter_shape: tuple or list of length 4 + :param filter_shape: (number of filters, num input feature maps, + filter height,filter width) + + :type image_shape: tuple or list of length 4 + :param image_shape: (batch size, num input feature maps, + image height, image width) + + :type poolsize: tuple or list of length 2 + :param poolsize: the downsampling (pooling) factor (#rows,#cols) + """ + + assert image_shape[1]==filter_shape[1] + self.input = input + + # initialize weights to temporary values until we know the shape of the output feature + # maps + W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX) + self.W = theano.shared(value = W_values) + + # the bias is a 1D tensor -- one bias per output feature map + b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values) + + # convolve input feature maps with filters + conv_out = conv.conv2d(input = input, filters = self.W, + filter_shape=filter_shape, image_shape=image_shape) + + # there are "num input feature maps * filter height * filter width" inputs + # to each hidden unit + fan_in = numpy.prod(filter_shape[1:]) + # each unit in the lower layer receives a gradient from: + # "num output feature maps * filter height * filter width" / pooling size + fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize) + # replace weight values with random weights + W_bound = numpy.sqrt(6./(fan_in + fan_out)) + self.W.value = numpy.asarray( + rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), + dtype = theano.config.floatX) + + # downsample each feature map individually, using maxpooling + pooled_out = downsample.max_pool2D( input = conv_out, + ds = poolsize, ignore_border=True) + + # add the bias term. Since the bias is a vector (1D array), we first + # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus + # be broadcasted across mini-batches and feature map width & height + self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) + + # store parameters of this layer + self.params = [self.W, self.b] + + + +def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20,50]): + """ Demonstrates lenet on MNIST dataset + + :type learning_rate: float + :param learning_rate: learning rate used (factor for the stochastic + gradient) + + :type n_epochs: int + :param n_epochs: maximal number of epochs to run the optimizer + + :type dataset: string + :param dataset: path to the dataset used for training /testing (MNIST here) + + :type nkerns: list of ints + :param nkerns: number of kernels on each layer + """ + + rng = numpy.random.RandomState(23455) + + datasets = load_data(dataset) + + train_set_x, train_set_y = datasets[0] + valid_set_x, valid_set_y = datasets[1] + test_set_x , test_set_y = datasets[2] + + + batch_size = 500 # size of the minibatch + + # compute number of minibatches for training, validation and testing + n_train_batches = train_set_x.value.shape[0] / batch_size + n_valid_batches = valid_set_x.value.shape[0] / batch_size + n_test_batches = test_set_x.value.shape[0] / batch_size + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + x = T.matrix('x') # the data is presented as rasterized images + y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + + ishape = (28,28) # this is the size of MNIST images + + ###################### + # BUILD ACTUAL MODEL # + ###################### + print '... building the model' + + # Reshape matrix of rasterized images of shape (batch_size,28*28) + # to a 4D tensor, compatible with our LeNetConvPoolLayer + layer0_input = x.reshape((batch_size,1,28,28)) + + # Construct the first convolutional pooling layer: + # filtering reduces the image size to (28-5+1,28-5+1)=(24,24) + # maxpooling reduces this further to (24/2,24/2) = (12,12) + # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12) + layer0 = LeNetConvPoolLayer(rng, input=layer0_input, + image_shape=(batch_size,1,28,28), + filter_shape=(nkerns[0],1,5,5), poolsize=(2,2)) + + # Construct the second convolutional pooling layer + # filtering reduces the image size to (12-5+1,12-5+1)=(8,8) + # maxpooling reduces this further to (8/2,8/2) = (4,4) + # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4) + layer1 = LeNetConvPoolLayer(rng, input=layer0.output, + image_shape=(batch_size,nkerns[0],12,12), + filter_shape=(nkerns[1],nkerns[0],5,5), poolsize=(2,2)) + + # the TanhLayer being fully-connected, it operates on 2D matrices of + # shape (batch_size,num_pixels) (i.e matrix of rasterized images). + # This will generate a matrix of shape (20,32*4*4) = (20,512) + layer2_input = layer1.output.flatten(2) + + # construct a fully-connected sigmoidal layer + layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1]*4*4, + n_out=500, activation = T.tanh) + + # classify the values of the fully-connected sigmoidal layer + layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) + + # the cost we minimize during training is the NLL of the model + cost = layer3.negative_log_likelihood(y) + + # create a function to compute the mistakes that are made by the model + test_model = theano.function([index], layer3.errors(y), + givens = { + x: test_set_x[index*batch_size:(index+1)*batch_size], + y: test_set_y[index*batch_size:(index+1)*batch_size]}) + + validate_model = theano.function([index], layer3.errors(y), + givens = { + x: valid_set_x[index*batch_size:(index+1)*batch_size], + y: valid_set_y[index*batch_size:(index+1)*batch_size]}) + + # create a list of all model parameters to be fit by gradient descent + params = layer3.params+ layer2.params+ layer1.params + layer0.params + + # create a list of gradients for all model parameters + grads = T.grad(cost, params) + + # train_model is a function that updates the model parameters by SGD + # Since this model has many parameters, it would be tedious to manually + # create an update rule for each model parameter. We thus create the updates + # dictionary by automatically looping over all (params[i],grads[i]) pairs. + updates = {} + for param_i, grad_i in zip(params, grads): + updates[param_i] = param_i - learning_rate * grad_i + + train_model = theano.function([index], cost, updates=updates, + givens = { + x: train_set_x[index*batch_size:(index+1)*batch_size], + y: train_set_y[index*batch_size:(index+1)*batch_size]}) + + + ############### + # TRAIN MODEL # + ############### + print '... training' + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(n_train_batches, patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_params = None + best_validation_loss = float('inf') + best_iter = 0 + test_score = 0. + start_time = time.clock() + + epoch = 0 + done_looping = False + + while (epoch < n_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(n_train_batches): + + iter = epoch * n_train_batches + minibatch_index + + if iter %100 == 0: + print 'training @ iter = ', iter + cost_ij = train_model(minibatch_index) + + if (iter+1) % validation_frequency == 0: + + # compute zero-one loss on validation set + validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, n_train_batches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [test_model(i) for i in xrange(n_test_batches)] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, n_train_batches, + test_score*100.)) + + if patience <= iter : + done_looping = False + break + + end_time = time.clock() + print('Optimization complete.') + print('Best validation score of %f %% obtained at iteration %i,'\ + 'with test performance %f %%' % + (best_validation_loss * 100., best_iter, test_score*100.)) + print('The code ran for %f minutes' % ((end_time-start_time)/60.)) + +if __name__ == '__main__': + evaluate_lenet5() + +def experiment(state, channel): + evaluate_lenet5(state.learning_rate, dataset=state.dataset)