Mercurial > ift6266
diff pycaptcha/Captcha/Visual/Distortions.py~ @ 87:4775b4195b4b
code pour la generation de captchas
author | goldfinger |
---|---|
date | Thu, 11 Feb 2010 05:09:46 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pycaptcha/Captcha/Visual/Distortions.py~ Thu Feb 11 05:09:46 2010 -0500 @@ -0,0 +1,117 @@ +""" Captcha.Visual.Distortions + +Distortion layers for visual CAPTCHAs +""" +# +# PyCAPTCHA Package +# Copyright (C) 2004 Micah Dowty <micah@navi.cx> +# + +from Captcha.Visual import Layer +import ImageDraw, Image +import random, math + + +class WigglyBlocks(Layer): + """Randomly select and shift blocks of the image""" + def __init__(self, blockSize=3, sigma=0.01, iterations=300): + self.blockSize = blockSize + self.sigma = sigma + self.iterations = iterations + self.seed = random.random() + + def render(self, image): + r = random.Random(self.seed) + for i in xrange(self.iterations): + # Select a block + bx = int(r.uniform(0, image.size[0]-self.blockSize)) + by = int(r.uniform(0, image.size[1]-self.blockSize)) + block = image.crop((bx, by, bx+self.blockSize-1, by+self.blockSize-1)) + + # Figure out how much to move it. + # The call to floor() is important so we always round toward + # 0 rather than to -inf. Just int() would bias the block motion. + mx = int(math.floor(r.normalvariate(0, self.sigma))) + my = int(math.floor(r.normalvariate(0, self.sigma))) + + # Now actually move the block + image.paste(block, (bx+mx, by+my)) + + +class WarpBase(Layer): + """Abstract base class for image warping. Subclasses define a + function that maps points in the output image to points in the input image. + This warping engine runs a grid of points through this transform and uses + PIL's mesh transform to warp the image. + """ + filtering = Image.BILINEAR + resolution = 10 + + def getTransform(self, image): + """Return a transformation function, subclasses should override this""" + return lambda x, y: (x, y) + + def render(self, image): + r = self.resolution + xPoints = image.size[0] / r + 2 + yPoints = image.size[1] / r + 2 + f = self.getTransform(image) + + # Create a list of arrays with transformed points + xRows = [] + yRows = [] + for j in xrange(yPoints): + xRow = [] + yRow = [] + for i in xrange(xPoints): + x, y = f(i*r, j*r) + + # Clamp the edges so we don't get black undefined areas + x = max(0, min(image.size[0]-1, x)) + y = max(0, min(image.size[1]-1, y)) + + xRow.append(x) + yRow.append(y) + xRows.append(xRow) + yRows.append(yRow) + + # Create the mesh list, with a transformation for + # each square between points on the grid + mesh = [] + for j in xrange(yPoints-1): + for i in xrange(xPoints-1): + mesh.append(( + # Destination rectangle + (i*r, j*r, + (i+1)*r, (j+1)*r), + # Source quadrilateral + (xRows[j ][i ], yRows[j ][i ], + xRows[j+1][i ], yRows[j+1][i ], + xRows[j+1][i+1], yRows[j+1][i+1], + xRows[j ][i+1], yRows[j ][i+1]), + )) + + return image.transform(image.size, Image.MESH, mesh, self.filtering) + + +class SineWarp(WarpBase): + """Warp the image using a random composition of sine waves""" + + def __init__(self, + amplitudeRange = (3, 6.5), + periodRange = (0.04, 0.1), + ): + self.amplitude = random.uniform(*amplitudeRange) + self.period = random.uniform(*periodRange) + self.offset = (random.uniform(0, math.pi * 2 / self.period), + random.uniform(0, math.pi * 2 / self.period)) + + def getTransform(self, image): + return (lambda x, y, + a = self.amplitude, + p = self.period, + o = self.offset: + (math.sin( (y+o[0])*p )*a + x, + math.sin( (x+o[1])*p )*a + y)) + +### The End ###