diff deep/rbm/mnistrbm.py @ 348:45156cbf6722

training an rbm using cd or pcd
author goldfinger
date Mon, 19 Apr 2010 08:17:45 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deep/rbm/mnistrbm.py	Mon Apr 19 08:17:45 2010 -0400
@@ -0,0 +1,215 @@
+import sys
+import os, os.path
+
+import numpy as N
+
+import theano
+import theano.tensor as T
+
+from crbm import CRBM, ConvolutionParams
+
+from pylearn.datasets import MNIST
+from pylearn.io.image_tiling import tile_raster_images
+
+import Image
+
+from pylearn.io.seriestables import *
+import tables
+
+IMAGE_OUTPUT_DIR = 'img/'
+
+REDUCE_EVERY = 100
+
+def filename_from_time(suffix):
+    import datetime
+    return str(datetime.datetime.now()) + suffix + ".png"
+
+# Just a shortcut for a common case where we need a few
+# related Error (float) series
+
+def get_accumulator_series_array( \
+                hdf5_file, group_name, series_names, 
+                reduce_every,
+                index_names=('epoch','minibatch'),
+                stdout_too=True,
+                skip_hdf5_append=False):
+    all_series = []
+
+    hdf5_file.createGroup('/', group_name)
+
+    other_targets = []
+    if stdout_too:
+        other_targets = [StdoutAppendTarget()]
+
+    for sn in series_names:
+        series_base = \
+            ErrorSeries(error_name=sn,
+                table_name=sn,
+                hdf5_file=hdf5_file,
+                hdf5_group='/'+group_name,
+                index_names=index_names,
+                other_targets=other_targets,
+                skip_hdf5_append=skip_hdf5_append)
+
+        all_series.append( \
+            AccumulatorSeriesWrapper( \
+                    base_series=series_base,
+                    reduce_every=reduce_every))
+
+    ret_wrapper = SeriesArrayWrapper(all_series)
+
+    return ret_wrapper
+
+class ExperienceRbm(object):
+    def __init__(self):
+        self.mnist = MNIST.full()#first_10k()
+
+        
+        datasets = load_data(dataset)
+
+        train_set_x, train_set_y = datasets[0]
+        test_set_x , test_set_y  = datasets[2]
+
+
+        batch_size = 100    # size of the minibatch
+
+        # compute number of minibatches for training, validation and testing
+        n_train_batches = train_set_x.value.shape[0] / batch_size
+
+        # allocate symbolic variables for the data
+        index = T.lscalar()    # index to a [mini]batch 
+        x     = T.matrix('x')  # the data is presented as rasterized images
+
+        rng        = numpy.random.RandomState(123)
+        theano_rng = RandomStreams( rng.randint(2**30))
+
+        # initialize storage fot the persistent chain (state = hidden layer of chain)
+        persistent_chain = theano.shared(numpy.zeros((batch_size, 500)))
+
+        # construct the RBM class
+        self.rbm = RBM( input = x, n_visible=28*28, \
+                   n_hidden = 500,numpy_rng = rng, theano_rng = theano_rng)
+
+        # get the cost and the gradient corresponding to one step of CD
+        
+
+        self.init_series()
+ 
+    def init_series(self):
+
+        series = {}
+
+        basedir = os.getcwd()
+
+        h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w")
+
+        cd_series_names = self.rbm.cd_return_desc
+        series['cd'] = \
+            get_accumulator_series_array( \
+                h5f, 'cd', cd_series_names,
+                REDUCE_EVERY,
+                stdout_too=True)
+
+       
+
+        # so first we create the names for each table, based on 
+        # position of each param in the array
+        params_stdout = StdoutAppendTarget("\n------\nParams")
+        series['params'] = SharedParamsStatisticsWrapper(
+                            new_group_name="params",
+                            base_group="/",
+                            arrays_names=['W','b_h','b_x'],
+                            hdf5_file=h5f,
+                            index_names=('epoch','minibatch'),
+                            other_targets=[params_stdout])
+
+        self.series = series
+
+    def train(self, persistent, learning_rate):
+
+        training_epochs = 15
+
+        #get the cost and the gradient corresponding to one step of CD
+        if persistant:
+            persistent_chain = theano.shared(numpy.zeros((batch_size, self.rbm.n_hidden)))
+            cost, updates = self.rbm.cd(lr=learning_rate, persistent=persistent_chain)
+
+        else:
+            cost, updates = self.rbm.cd(lr=learning_rate)
+    
+        dirname = 'lr=%.5f'%self.rbm.learning_rate
+        os.makedirs(dirname)
+        os.chdir(dirname)
+
+        # the purpose of train_rbm is solely to update the RBM parameters
+        train_rbm = theano.function([index], cost,
+               updates = updates, 
+               givens = { x: train_set_x[index*batch_size:(index+1)*batch_size]})
+
+        plotting_time = 0.
+        start_time = time.clock()  
+
+
+        # go through training epochs 
+        for epoch in xrange(training_epochs):
+
+            # go through the training set
+            mean_cost = []
+            for batch_index in xrange(n_train_batches):
+               mean_cost += [train_rbm(batch_index)]
+
+    
+        pretraining_time = (end_time - start_time)
+            
+
+       
+    
+    def sample_from_rbm(self, gibbs_steps, test_set_x):
+
+        # find out the number of test samples  
+        number_of_test_samples = test_set_x.value.shape[0]
+
+        # pick random test examples, with which to initialize the persistent chain
+        test_idx = rng.randint(number_of_test_samples-20)
+        persistent_vis_chain = theano.shared(test_set_x.value[test_idx:test_idx+20])
+
+        # define one step of Gibbs sampling (mf = mean-field)
+        [hid_mf, hid_sample, vis_mf, vis_sample] =  self.rbm.gibbs_vhv(persistent_vis_chain)
+
+        # the sample at the end of the channel is returned by ``gibbs_1`` as 
+        # its second output; note that this is computed as a binomial draw, 
+        # therefore it is formed of ints (0 and 1) and therefore needs to 
+        # be converted to the same dtype as ``persistent_vis_chain``
+        vis_sample = T.cast(vis_sample, dtype=theano.config.floatX)
+
+        # construct the function that implements our persistent chain 
+        # we generate the "mean field" activations for plotting and the actual samples for
+        # reinitializing the state of our persistent chain
+        sample_fn = theano.function([], [vis_mf, vis_sample],
+                          updates = { persistent_vis_chain:vis_sample})
+
+        # sample the RBM, plotting every `plot_every`-th sample; do this 
+        # until you plot at least `n_samples`
+        n_samples = 10
+        plot_every = 1000
+
+        for idx in xrange(n_samples):
+
+            # do `plot_every` intermediate samplings of which we do not care
+            for jdx in  xrange(plot_every):
+                vis_mf, vis_sample = sample_fn()
+
+            # construct image
+            image = PIL.Image.fromarray(tile_raster_images( 
+                                             X          = vis_mf,
+                                             img_shape  = (28,28),
+                                             tile_shape = (10,10),
+                                             tile_spacing = (1,1) ) )
+            
+            image.save('sample_%i_step_%i.png'%(idx,idx*jdx))    
+
+
+if __name__ == '__main__':
+    mc = ExperienceRbm()
+    mc.train()
+