Mercurial > ift6266
diff deep/stacked_dae/v2/nist_sda.py @ 239:42005ec87747
Mergé (manuellement) les changements de Sylvain pour utiliser le code de dataset d'Arnaud, à cette différence près que je n'utilse pas les givens. J'ai probablement une approche différente pour limiter la taille du dataset dans mon débuggage, aussi.
author | fsavard |
---|---|
date | Mon, 15 Mar 2010 18:30:21 -0400 |
parents | 02eb98d051fe |
children |
line wrap: on
line diff
--- a/deep/stacked_dae/v2/nist_sda.py Mon Mar 15 13:22:20 2010 -0400 +++ b/deep/stacked_dae/v2/nist_sda.py Mon Mar 15 18:30:21 2010 -0400 @@ -29,48 +29,8 @@ from ift6266.utils.seriestables import * import tables -############################################################################## -# GLOBALS - -TEST_CONFIG = False - -NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' -JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/fsavard_sda_v2' -EXPERIMENT_PATH = "ift6266.deep.stacked_dae.v2.nist_sda.jobman_entrypoint" - -REDUCE_TRAIN_TO = None -MAX_FINETUNING_EPOCHS = 1000 -# number of minibatches before taking means for valid error etc. -REDUCE_EVERY = 100 - -if TEST_CONFIG: - REDUCE_TRAIN_TO = 1000 - MAX_FINETUNING_EPOCHS = 2 - REDUCE_EVERY = 10 - -# Possible values the hyperparameters can take. These are then -# combined with produit_cartesien_jobs so we get a list of all -# possible combinations, each one resulting in a job inserted -# in the jobman DB. -JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001], - 'pretraining_epochs_per_layer': [10,20], - 'hidden_layers_sizes': [300,800], - 'corruption_levels': [0.1,0.2,0.3], - 'minibatch_size': [20], - 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], - 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out - 'num_hidden_layers':[2,3]} - -# Just useful for tests... minimal number of epochs -DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, - 'pretraining_lr':0.1, - 'pretraining_epochs_per_layer':2, - 'max_finetuning_epochs':2, - 'hidden_layers_sizes':800, - 'corruption_levels':0.2, - 'minibatch_size':20, - 'reduce_train_to':10000, - 'num_hidden_layers':1}) +from ift6266 import datasets +from config import * ''' Function called by jobman upon launching each job @@ -82,14 +42,6 @@ # TODO: remove this, bad for number of simultaneous requests on DB channel.save() - workingdir = os.getcwd() - - print "Will load NIST" - - nist = NIST(minibatch_size=20) - - print "NIST loaded" - # For test runs, we don't want to use the whole dataset so # reduce it to fewer elements if asked to. rtt = None @@ -97,29 +49,27 @@ rtt = state['reduce_train_to'] elif REDUCE_TRAIN_TO: rtt = REDUCE_TRAIN_TO - - if rtt: - print "Reducing training set to "+str(rtt)+ " examples" - nist.reduce_train_set(rtt) - - train,valid,test = nist.get_tvt() - dataset = (train,valid,test) - + n_ins = 32*32 n_outs = 62 # 10 digits, 26*2 (lower, capitals) + + examples_per_epoch = NIST_ALL_TRAIN_SIZE series = create_series(state.num_hidden_layers) print "Creating optimizer with state, ", state - optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \ + optimizer = SdaSgdOptimizer(dataset=datasets.nist_all, + hyperparameters=state, \ n_ins=n_ins, n_outs=n_outs,\ - input_divider=255.0, series=series) + examples_per_epoch=examples_per_epoch, \ + series=series, + max_minibatches=rtt) - optimizer.pretrain() + optimizer.pretrain(datasets.nist_all) channel.save() - optimizer.finetune() + optimizer.finetune(datasets.nist_all) channel.save() return channel.COMPLETE @@ -200,93 +150,14 @@ print "inserted" -class NIST: - def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): - global NIST_ALL_LOCATION - - self.minibatch_size = minibatch_size - self.basepath = basepath and basepath or NIST_ALL_LOCATION - - self.set_filenames() - - # arrays of 2 elements: .x, .y - self.train = [None, None] - self.test = [None, None] - - self.load_train_test() - - self.valid = [[], []] - self.split_train_valid() - if reduce_train_to: - self.reduce_train_set(reduce_train_to) - - def get_tvt(self): - return self.train, self.valid, self.test - - def set_filenames(self): - self.train_files = ['all_train_data.ft', - 'all_train_labels.ft'] - - self.test_files = ['all_test_data.ft', - 'all_test_labels.ft'] - - def load_train_test(self): - self.load_data_labels(self.train_files, self.train) - self.load_data_labels(self.test_files, self.test) - - def load_data_labels(self, filenames, pair): - for i, fn in enumerate(filenames): - f = open(os.path.join(self.basepath, fn)) - pair[i] = filetensor.read(f) - f.close() - - def reduce_train_set(self, max): - self.train[0] = self.train[0][:max] - self.train[1] = self.train[1][:max] - - if max < len(self.test[0]): - for ar in (self.test, self.valid): - ar[0] = ar[0][:max] - ar[1] = ar[1][:max] - - def split_train_valid(self): - test_len = len(self.test[0]) - - new_train_x = self.train[0][:-test_len] - new_train_y = self.train[1][:-test_len] - - self.valid[0] = self.train[0][-test_len:] - self.valid[1] = self.train[1][-test_len:] - - self.train[0] = new_train_x - self.train[1] = new_train_y - -def test_load_nist(): - print "Will load NIST" - - import time - t1 = time.time() - nist = NIST(20) - t2 = time.time() - - print "NIST loaded. time delta = ", t2-t1 - - tr,v,te = nist.get_tvt() - - print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) - - raw_input("Press any key") - if __name__ == '__main__': - import sys - args = sys.argv[1:] - if len(args) > 0 and args[0] == 'load_nist': - test_load_nist() + #if len(args) > 0 and args[0] == 'load_nist': + # test_load_nist() - elif len(args) > 0 and args[0] == 'jobman_insert': + if len(args) > 0 and args[0] == 'jobman_insert': jobman_insert_nist() elif len(args) > 0 and args[0] == 'test_jobman_entrypoint':