Mercurial > ift6266
diff deep/convolutional_dae/stacked_convolutional_dae.py @ 215:334d2444000d
Changes that enable using this code when floatX=float32
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Wed, 10 Mar 2010 13:48:16 -0500 |
parents | 3f2cc90ad51c |
children | 4d109b648c31 |
line wrap: on
line diff
--- a/deep/convolutional_dae/stacked_convolutional_dae.py Tue Mar 09 10:15:19 2010 -0500 +++ b/deep/convolutional_dae/stacked_convolutional_dae.py Wed Mar 10 13:48:16 2010 -0500 @@ -56,7 +56,7 @@ self.b = theano.shared(value = initial_b, name = "b") - initial_b_prime= numpy.zeros((filter_shape[1],)) + initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX) self.W_prime=T.dtensor4('W_prime') @@ -64,7 +64,7 @@ self.x = input - self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape, image_shape=image_shape, border_mode='valid') @@ -135,7 +135,7 @@ self.conv_n_layers = len(conv_hidden_layers_sizes) self.mlp_n_layers = len(mlp_hidden_layers_sizes) - self.x = T.dmatrix('x') # the data is presented as rasterized images + self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of for i in xrange( self.conv_n_layers ): @@ -156,7 +156,7 @@ self.layers += [layer] self.params += layer.params - + da_layer = dA_conv(corruption_level = corruption_levels[0], input = layer_input, shared_W = layer.W, shared_b = layer.b,