Mercurial > ift6266
diff deep/convolutional_dae/scdae.py @ 277:20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Mon, 22 Mar 2010 16:37:34 -0400 |
parents | 727ed56fad12 |
children | 80ee63c3e749 |
line wrap: on
line diff
--- a/deep/convolutional_dae/scdae.py Mon Mar 22 13:33:29 2010 -0400 +++ b/deep/convolutional_dae/scdae.py Mon Mar 22 16:37:34 2010 -0400 @@ -60,7 +60,7 @@ rl2 = ReshapeLayer((None, outs)) layer_sizes = [outs]+layer_sizes ls2 = mlp(layer_sizes, dtype) - lrl = SimpleLayer(layer_sizes[-1], out_size, activation=nlins.sigmoid) + lrl = SimpleLayer(layer_sizes[-1], out_size, activation=nlins.softmax) return NNet([rl1, ls, rl2, ls2, lrl], error=errors.nll) def build_funcs(batch_size, img_size, filter_sizes, num_filters, subs, @@ -89,7 +89,7 @@ pretrain_funcs_reg = [pretrainfunc(l, 0.01) for l in n.layers[1].layers] trainf_reg = trainfunc(n, 0.1) evalf_reg = theano.function([x, y], errors.class_error(n.output, y)) - + def select_f(f1, f2, bsize): def f(x): if x.shape[0] == bsize: @@ -117,25 +117,25 @@ for i in xrange(pretrain_epochs): f() -def massage_funcs(batch_size, dset, pretrain_funcs, trainf, evalf): +def massage_funcs(train_it, dset, batch_size, pretrain_funcs, trainf, evalf): def pretrain_f(f): def res(): - for x, y in dset.train(batch_size): - print "pretrain:", f(x) - return res + for x, y in train_it: + yield f(x) + it = res() + return lambda: it.next() pretrain_fs = map(pretrain_f, pretrain_funcs) - def train_f(f, dsetf): + def train_f(f): def dset_it(): - while True: - for x, y in dsetf(batch_size): - yield f(x, y) + for x, y in train_it: + yield f(x, y) it = dset_it() return lambda: it.next() - - train = train_f(trainf, dset.train) - + + train = train_f(trainf) + def eval_f(f, dsetf): def res(): c = 0 @@ -151,6 +151,11 @@ return pretrain_fs, train, valid, test +def repeat_itf(itf, *args, **kwargs): + while True: + for e in itf(*args, **kwargs): + yield e + def run_exp(state, channel): from ift6266 import datasets from sgd_opt import sgd_opt @@ -205,25 +210,28 @@ import sys, time batch_size = 100 - dset = datasets.mnist(200) + dset = datasets.mnist() pretrain_funcs, trainf, evalf = build_funcs( img_size = (28, 28), - batch_size=batch_size, filter_sizes=[(5,5), (5,5)], - num_filters=[4, 3], subs=[(2,2), (2,2)], noise=[0.2, 0.2], + batch_size=batch_size, filter_sizes=[(5,5), (3,3)], + num_filters=[4, 4], subs=[(2,2), (2,2)], noise=[0.2, 0.2], mlp_sizes=[500], out_size=10, dtype=numpy.float32, pretrain_lr=0.01, train_lr=0.1) - + pretrain_fs, train, valid, test = massage_funcs( - batch_size, dset, pretrain_funcs, trainf, evalf) + repeat_itf(dset.train, batch_size), + dset, batch_size, + pretrain_funcs, trainf, evalf) print "pretraining ...", sys.stdout.flush() start = time.time() - do_pretrain(pretrain_fs, 0) + do_pretrain(pretrain_fs, 2500) end = time.time() print "done (in", end-start, "s)" - sgd_opt(train, valid, test, training_epochs=1000, patience=1000, + sgd_opt(train, valid, test, training_epochs=10000, patience=1000, patience_increase=2., improvement_threshold=0.995, - validation_frequency=500) + validation_frequency=250) +