Mercurial > ift6266
diff deep/stacked_dae/sgd_optimization.py @ 167:1f5937e9e530
More moves - transformations into data_generation, added "deep" folder
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:15:38 -0500 |
parents | scripts/stacked_dae/sgd_optimization.py@7d8366fb90bf |
children | b9ea8e2d071a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/sgd_optimization.py Fri Feb 26 14:15:38 2010 -0500 @@ -0,0 +1,270 @@ +#!/usr/bin/python +# coding: utf-8 + +# Generic SdA optimization loop, adapted from the deeplearning.net tutorial + +import numpy +import theano +import time +import theano.tensor as T +import copy +import sys + +from jobman import DD +import jobman, jobman.sql + +from stacked_dae import SdA + +def shared_dataset(data_xy): + data_x, data_y = data_xy + #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) + #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) + #shared_y = T.cast(shared_y, 'int32') + shared_x = theano.shared(data_x) + shared_y = theano.shared(data_y) + return shared_x, shared_y + +class SdaSgdOptimizer: + def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0,\ + job_tree=False, results_db=None,\ + experiment="",\ + num_hidden_layers_to_try=[1,2,3], \ + finetuning_lr_to_try=[0.1, 0.01, 0.001, 0.0001, 0.00001]): + + self.dataset = dataset + self.hp = copy.copy(hyperparameters) + self.n_ins = n_ins + self.n_outs = n_outs + self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) + + self.job_tree = job_tree + self.results_db = results_db + self.experiment = experiment + if self.job_tree: + assert(not results_db is None) + # these hp should not be there, so we insert default values + # we use 3 hidden layers as we'll iterate through 1,2,3 + self.hp.finetuning_lr = 0.1 # dummy value, will be replaced anyway + cl = self.hp.corruption_levels + nh = self.hp.hidden_layers_sizes + self.hp.corruption_levels = [cl,cl,cl] + self.hp.hidden_layers_sizes = [nh,nh,nh] + + self.num_hidden_layers_to_try = num_hidden_layers_to_try + self.finetuning_lr_to_try = finetuning_lr_to_try + + self.printout_frequency = 1000 + + self.rng = numpy.random.RandomState(1234) + + self.init_datasets() + self.init_classifier() + + def init_datasets(self): + print "init_datasets" + train_set, valid_set, test_set = self.dataset + self.test_set_x, self.test_set_y = shared_dataset(test_set) + self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) + self.train_set_x, self.train_set_y = shared_dataset(train_set) + + # compute number of minibatches for training, validation and testing + self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size + self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size + self.n_test_batches = self.test_set_x.value.shape[0] / self.hp.minibatch_size + + def init_classifier(self): + print "Constructing classifier" + # construct the stacked denoising autoencoder class + self.classifier = SdA( \ + train_set_x= self.train_set_x, \ + train_set_y = self.train_set_y,\ + batch_size = self.hp.minibatch_size, \ + n_ins= self.n_ins, \ + hidden_layers_sizes = self.hp.hidden_layers_sizes, \ + n_outs = self.n_outs, \ + corruption_levels = self.hp.corruption_levels,\ + rng = self.rng,\ + pretrain_lr = self.hp.pretraining_lr, \ + finetune_lr = self.hp.finetuning_lr,\ + input_divider = self.input_divider ) + + def train(self): + self.pretrain() + if not self.job_tree: + # if job_tree is True, finetuning was already performed + self.finetune() + + def pretrain(self): + print "STARTING PRETRAINING" + + printout_acc = 0.0 + last_error = 0.0 + + start_time = time.clock() + ## Pre-train layer-wise + for i in xrange(self.classifier.n_layers): + # go through pretraining epochs + for epoch in xrange(self.hp.pretraining_epochs_per_layer): + # go through the training set + for batch_index in xrange(self.n_train_batches): + c = self.classifier.pretrain_functions[i](batch_index) + + printout_acc += c / self.printout_frequency + if (batch_index+1) % self.printout_frequency == 0: + print batch_index, "reconstruction cost avg=", printout_acc + last_error = printout_acc + printout_acc = 0.0 + + print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c + + self.job_splitter(i+1, time.clock()-start_time, last_error) + + end_time = time.clock() + + print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) + + # Save time by reusing intermediate results + def job_splitter(self, current_pretraining_layer, pretraining_time, last_error): + + state_copy = None + original_classifier = None + + if self.job_tree and current_pretraining_layer in self.num_hidden_layers_to_try: + for lr in self.finetuning_lr_to_try: + sys.stdout.flush() + sys.stderr.flush() + + state_copy = copy.copy(self.hp) + + self.hp.update({'num_hidden_layers':current_pretraining_layer, \ + 'finetuning_lr':lr,\ + 'pretraining_time':pretraining_time,\ + 'last_reconstruction_error':last_error}) + + original_classifier = self.classifier + print "ORIGINAL CLASSIFIER MEANS",original_classifier.get_params_means() + self.classifier = SdA.copy_reusing_lower_layers(original_classifier, current_pretraining_layer, new_finetuning_lr=lr) + + self.finetune() + + self.insert_finished_job() + + print "NEW CLASSIFIER MEANS AFTERWARDS",self.classifier.get_params_means() + print "ORIGINAL CLASSIFIER MEANS AFTERWARDS",original_classifier.get_params_means() + self.classifier = original_classifier + self.hp = state_copy + + def insert_finished_job(self): + job = copy.copy(self.hp) + job[jobman.sql.STATUS] = jobman.sql.DONE + job[jobman.sql.EXPERIMENT] = self.experiment + + # don,t try to store arrays in db + job['hidden_layers_sizes'] = job.hidden_layers_sizes[0] + job['corruption_levels'] = job.corruption_levels[0] + + print "Will insert finished job", job + jobman.sql.insert_dict(jobman.flatten(job), self.results_db) + + def finetune(self): + print "STARTING FINETUNING" + + index = T.lscalar() # index to a [mini]batch + minibatch_size = self.hp.minibatch_size + + # create a function to compute the mistakes that are made by the model + # on the validation set, or testing set + test_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, + self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + validate_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, + self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2. # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(self.n_train_batches, patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + + done_looping = False + epoch = 0 + + printout_acc = 0.0 + + if not self.hp.has_key('max_finetuning_epochs'): + self.hp.max_finetuning_epochs = 1000 + + while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(self.n_train_batches): + + cost_ij = self.classifier.finetune(minibatch_index) + iter = epoch * self.n_train_batches + minibatch_index + + printout_acc += cost_ij / float(self.printout_frequency * minibatch_size) + if (iter+1) % self.printout_frequency == 0: + print iter, "cost avg=", printout_acc + printout_acc = 0.0 + + if (iter+1) % validation_frequency == 0: + + validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, self.n_train_batches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [test_model(i) for i in xrange(self.n_test_batches)] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, self.n_train_batches, + test_score*100.)) + + + if patience <= iter : + done_looping = True + break + + end_time = time.clock() + self.hp.update({'finetuning_time':end_time-start_time,\ + 'best_validation_error':best_validation_loss,\ + 'test_score':test_score, + 'num_finetuning_epochs':epoch}) + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) + + +