Mercurial > ift6266
diff data_generation/transformations/local_elastic_distortions.py @ 167:1f5937e9e530
More moves - transformations into data_generation, added "deep" folder
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:15:38 -0500 |
parents | transformations/local_elastic_distortions.py@b3d76ebf2fac |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/data_generation/transformations/local_elastic_distortions.py Fri Feb 26 14:15:38 2010 -0500 @@ -0,0 +1,456 @@ +#!/usr/bin/python +# coding: utf-8 + +''' +Implementation of elastic distortions as described in +Simard, Steinkraus, Platt, "Best Practices for Convolutional + Neural Networks Applied to Visual Document Analysis", 2003 + +Author: François Savard +Date: Fall 2009, revised Winter 2010 + +Usage: create the Distorter with proper alpha, sigma etc. + Then each time you want to change the distortion field applied, + call regenerate_field(). + + (The point behind this is that regeneration takes some time, + so we better reuse the fields a few times) +''' + +import sys +import math +import numpy +import numpy.random +import scipy.signal # convolve2d + +_TEST_DIR = "/u/savardf/ift6266/debug_images/" + +def _raw_zeros(size): + return [[0 for i in range(size[1])] for j in range(size[0])] + +class ElasticDistortionParams(): + def __init__(self, image_size=(32,32), alpha=0.0, sigma=0.0): + self.image_size = image_size + self.alpha = alpha + self.sigma = sigma + + h,w = self.image_size + + self.matrix_tl_corners_rows = _raw_zeros((h,w)) + self.matrix_tl_corners_cols = _raw_zeros((h,w)) + + self.matrix_tr_corners_rows = _raw_zeros((h,w)) + self.matrix_tr_corners_cols = _raw_zeros((h,w)) + + self.matrix_bl_corners_rows = _raw_zeros((h,w)) + self.matrix_bl_corners_cols = _raw_zeros((h,w)) + + self.matrix_br_corners_rows = _raw_zeros((h,w)) + self.matrix_br_corners_cols = _raw_zeros((h,w)) + + # those will hold the precomputed ratios for + # bilinear interpolation + self.matrix_tl_multiply = numpy.zeros((h,w)) + self.matrix_tr_multiply = numpy.zeros((h,w)) + self.matrix_bl_multiply = numpy.zeros((h,w)) + self.matrix_br_multiply = numpy.zeros((h,w)) + + def alpha_sigma(self): + return [self.alpha, self.sigma] + +class LocalElasticDistorter(): + def __init__(self, image_size=(32,32)): + self.image_size = image_size + + self.current_complexity_10 = 0 + self.current_complexity = 0 + + # number of precomputed fields + # (principle: as complexity doesn't change often, we can + # precompute a certain number of fields for a given complexity, + # each with its own parameters. That way, we have good + # randomization, but we're much faster). + self.to_precompute_per_complexity = 50 + + # Both use ElasticDistortionParams + self.current_params = None + self.precomputed_params = [[] for i in range(10)] + + # + self.kernel_size = None + self.kernel = None + + # set some defaults + self.regenerate_parameters(0.0) + + def get_settings_names(self): + return [] + + def _floor_complexity(self, complexity): + return self._to_complexity_10(complexity) / 10.0 + + def _to_complexity_10(self, complexity): + return min(9, max(0, int(complexity * 10))) + + def regenerate_parameters(self, complexity): + complexity_10 = self._to_complexity_10(complexity) + + if complexity_10 != self.current_complexity_10: + self.current_complexity_10 = complexity_10 + self.current_complexity = self._floor_complexity(complexity) + + if len(self.precomputed_params[complexity_10]) <= self.to_precompute_per_complexity: + # not yet enough params generated, produce one more + # and append to list + new_params = self._initialize_new_params() + new_params = self._generate_fields(new_params) + self.current_params = new_params + self.precomputed_params[complexity_10].append(new_params) + else: + # if we have enough precomputed fields, just select one + # at random and set parameters to match what they were + # when the field was generated + idx = numpy.random.randint(0, len(self.precomputed_params[complexity_10])) + self.current_params = self.precomputed_params[complexity_10][idx] + + # don't return anything, to avoid storing deterministic parameters + return [] # self.current_params.alpha_sigma() + + def get_parameters_determined_by_complexity(self, complexity): + tmp_params = self._initialize_new_params(_floor_complexity(complexity)) + return tmp_params.alpha_sigma() + + def get_settings_names_determined_by_complexity(self, complexity): + return ['alpha', 'sigma'] + + # adapted from http://blenderartists.org/forum/showthread.php?t=163361 + def _gen_gaussian_kernel(self, sigma): + # the kernel size can change DRAMATICALLY the time + # for the blur operation... so even though results are better + # with a bigger kernel, we need to compromise here + # 1*s is very different from 2*s, but there's not much difference + # between 2*s and 4*s + ks = self.kernel_size + s = sigma + target_ks = (1.5*s, 1.5*s) + if not ks is None and ks[0] == target_ks[0] and ks[1] == target_ks[1]: + # kernel size is good, ok, no need to regenerate + return + self.kernel_size = target_ks + h,w = self.kernel_size + a,b = h/2.0, w/2.0 + y,x = numpy.ogrid[0:w, 0:h] + gauss = numpy.exp(-numpy.square((x-a)/s))*numpy.exp(-numpy.square((y-b)/s)) + # Normalize so we don't reduce image intensity + self.kernel = gauss/gauss.sum() + + def _gen_distortion_field(self, params): + self._gen_gaussian_kernel(params.sigma) + + # we add kernel_size on all four sides so blurring + # with the kernel produces a smoother result on borders + ks0 = self.kernel_size[0] + ks1 = self.kernel_size[1] + sz0 = self.image_size[1] + ks0 + sz1 = self.image_size[0] + ks1 + field = numpy.random.uniform(-1.0, 1.0, (sz0, sz1)) + field = scipy.signal.convolve2d(field, self.kernel, mode='same') + + # crop only image_size in the middle + field = field[ks0:ks0+self.image_size[0], ks1:ks1+self.image_size[1]] + + return params.alpha * field + + + def _initialize_new_params(self, complexity=None): + if not complexity: + complexity = self.current_complexity + + params = ElasticDistortionParams(self.image_size) + + # pour faire progresser la complexité un peu plus vite + # tout en gardant les extrêmes de 0.0 et 1.0 + complexity = complexity ** (1./3.) + + # the smaller the alpha, the closest the pixels are fetched + # a max of 10 is reasonable + params.alpha = complexity * 10.0 + + # the bigger the sigma, the smoother is the distortion + # max of 1 is "reasonable", but produces VERY noisy results + # And the bigger the sigma, the bigger the blur kernel, and the + # slower the field generation, btw. + params.sigma = 10.0 - (7.0 * complexity) + + return params + + def _generate_fields(self, params): + ''' + Here's how the code works: + - We first generate "distortion fields" for x and y with these steps: + - Uniform noise over [-1, 1] in a matrix of size (h,w) + - Blur with a Gaussian kernel of spread sigma + - Multiply by alpha + - Then (conceptually) to compose the distorted image, we loop over each pixel + of the new image and use the corresponding x and y distortions + (from the matrices generated above) to identify pixels + of the old image from which we fetch color data. As the + coordinates are not integer, we interpolate between the + 4 nearby pixels (top left, top right etc.). + - That's just conceptually. Here I'm using matrix operations + to speed up the computation. I first identify the 4 nearby + pixels in the old image for each pixel in the distorted image. + I can then use them as "fancy indices" to extract the proper + pixels for each new pixel. + - Then I multiply those extracted nearby points by precomputed + ratios for the bilinear interpolation. + ''' + + p = params + + dist_fields = [None, None] + dist_fields[0] = self._gen_distortion_field(params) + dist_fields[1] = self._gen_distortion_field(params) + + #pylab.imshow(dist_fields[0]) + #pylab.show() + + # regenerate distortion index matrices + # "_rows" are row indices + # "_cols" are column indices + # (separated due to the way fancy indexing works in numpy) + h,w = p.image_size + + for y in range(h): + for x in range(w): + distort_x = dist_fields[0][y,x] + distort_y = dist_fields[1][y,x] + + # the "target" is the coordinate we fetch color data from + # (in the original image) + # target_left and _top are the rounded coordinate on the + # left/top of this target (float) coordinate + target_pixel = (y+distort_y, x+distort_x) + + target_left = int(math.floor(x + distort_x)) + target_top = int(math.floor(y + distort_y)) + + index_tl = [target_top, target_left] + index_tr = [target_top, target_left+1] + index_bl = [target_top+1, target_left] + index_br = [target_top+1, target_left+1] + + # x_ratio is the ratio of importance of left pixels + # y_ratio is the """" of top pixels + # (in bilinear combination) + y_ratio = 1.0 - (target_pixel[0] - target_top) + x_ratio = 1.0 - (target_pixel[1] - target_left) + + # We use a default background color of 0 for displacements + # outside of boundaries of the image. + + # if top left outside bounds + if index_tl[0] < 0 or index_tl[0] >= h or index_tl[1] < 0 or index_tl[1] >= w: + p.matrix_tl_corners_rows[y][x] = 0 + p.matrix_tl_corners_cols[y][x] = 0 + p.matrix_tl_multiply[y,x] = 0 + else: + p.matrix_tl_corners_rows[y][x] = index_tl[0] + p.matrix_tl_corners_cols[y][x] = index_tl[1] + p.matrix_tl_multiply[y,x] = x_ratio*y_ratio + + # if top right outside bounds + if index_tr[0] < 0 or index_tr[0] >= h or index_tr[1] < 0 or index_tr[1] >= w: + p.matrix_tr_corners_rows[y][x] = 0 + p.matrix_tr_corners_cols[y][x] = 0 + p.matrix_tr_multiply[y,x] = 0 + else: + p.matrix_tr_corners_rows[y][x] = index_tr[0] + p.matrix_tr_corners_cols[y][x] = index_tr[1] + p.matrix_tr_multiply[y,x] = (1.0-x_ratio)*y_ratio + + # if bottom left outside bounds + if index_bl[0] < 0 or index_bl[0] >= h or index_bl[1] < 0 or index_bl[1] >= w: + p.matrix_bl_corners_rows[y][x] = 0 + p.matrix_bl_corners_cols[y][x] = 0 + p.matrix_bl_multiply[y,x] = 0 + else: + p.matrix_bl_corners_rows[y][x] = index_bl[0] + p.matrix_bl_corners_cols[y][x] = index_bl[1] + p.matrix_bl_multiply[y,x] = x_ratio*(1.0-y_ratio) + + # if bottom right outside bounds + if index_br[0] < 0 or index_br[0] >= h or index_br[1] < 0 or index_br[1] >= w: + p.matrix_br_corners_rows[y][x] = 0 + p.matrix_br_corners_cols[y][x] = 0 + p.matrix_br_multiply[y,x] = 0 + else: + p.matrix_br_corners_rows[y][x] = index_br[0] + p.matrix_br_corners_cols[y][x] = index_br[1] + p.matrix_br_multiply[y,x] = (1.0-x_ratio)*(1.0-y_ratio) + + # not really necessary, but anyway + return p + + def transform_image(self, image): + p = self.current_params + + # index pixels to get the 4 corners for bilinear combination + tl_pixels = image[p.matrix_tl_corners_rows, p.matrix_tl_corners_cols] + tr_pixels = image[p.matrix_tr_corners_rows, p.matrix_tr_corners_cols] + bl_pixels = image[p.matrix_bl_corners_rows, p.matrix_bl_corners_cols] + br_pixels = image[p.matrix_br_corners_rows, p.matrix_br_corners_cols] + + # bilinear ratios, elemwise multiply + tl_pixels = numpy.multiply(tl_pixels, p.matrix_tl_multiply) + tr_pixels = numpy.multiply(tr_pixels, p.matrix_tr_multiply) + bl_pixels = numpy.multiply(bl_pixels, p.matrix_bl_multiply) + br_pixels = numpy.multiply(br_pixels, p.matrix_br_multiply) + + # sum to finish bilinear combination + return numpy.sum([tl_pixels,tr_pixels,bl_pixels,br_pixels], axis=0).astype(numpy.float32) + +# TESTS ---------------------------------------------------------------------- + +def _load_image(filepath): + _RGB_TO_GRAYSCALE = [0.3, 0.59, 0.11, 0.0] + img = Image.open(filepath) + img = numpy.asarray(img) + if len(img.shape) > 2: + img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) + return (img / 255.0).astype('float') + +def _specific_test(): + imgpath = os.path.join(_TEST_DIR, "d.png") + img = _load_image(imgpath) + dist = LocalElasticDistorter((32,32)) + print dist.regenerate_parameters(0.5) + img = dist.transform_image(img) + print dist.get_parameters_determined_by_complexity(0.4) + pylab.imshow(img) + pylab.show() + +def _complexity_tests(): + imgpath = os.path.join(_TEST_DIR, "d.png") + dist = LocalElasticDistorter((32,32)) + orig_img = _load_image(imgpath) + html_content = '''<html><body>Original:<br/><img src='d.png'>''' + for complexity in numpy.arange(0.0, 1.1, 0.1): + html_content += '<br/>Complexity: ' + str(complexity) + '<br/>' + for i in range(10): + t1 = time.time() + dist.regenerate_parameters(complexity) + t2 = time.time() + print "diff", t2-t1 + img = dist.transform_image(orig_img) + filename = "complexity_" + str(complexity) + "_" + str(i) + ".png" + new_path = os.path.join(_TEST_DIR, filename) + _save_image(img, new_path) + html_content += '<img src="' + filename + '">' + html_content += "</body></html>" + html_file = open(os.path.join(_TEST_DIR, "complexity.html"), "w") + html_file.write(html_content) + html_file.close() + +def _complexity_benchmark(): + imgpath = os.path.join(_TEST_DIR, "d.png") + dist = LocalElasticDistorter((32,32)) + orig_img = _load_image(imgpath) + + for cpx in (0.21, 0.35): + # time the first 10 + t1 = time.time() + for i in range(10): + dist.regenerate_parameters(cpx) + img = dist.transform_image(orig_img) + t2 = time.time() + + print "first 10, total = ", t2-t1, ", avg=", (t2-t1)/10 + + # time the next 40 + t1 = time.time() + for i in range(40): + dist.regenerate_parameters(cpx) + img = dist.transform_image(orig_img) + t2 = time.time() + + print "next 40, total = ", t2-t1, ", avg=", (t2-t1)/40 + + # time the next 50 + t1 = time.time() + for i in range(50): + dist.regenerate_parameters(cpx) + img = dist.transform_image(orig_img) + t2 = time.time() + + print "next 50, total = ", t2-t1, ", avg=", (t2-t1)/50 + + # time the next 1000 + t1 = time.time() + for i in range(1000): + dist.regenerate_parameters(cpx) + img = dist.transform_image(orig_img) + t2 = time.time() + + print "next 1000, total = ", t2-t1, ", avg=", (t2-t1)/1000 + + # time the next 1000 with old complexity + t1 = time.time() + for i in range(1000): + dist.regenerate_parameters(0.21) + img = dist.transform_image(orig_img) + t2 = time.time() + + print "next 1000, total = ", t2-t1, ", avg=", (t2-t1)/1000 + + + + +def _save_image(img, path): + img2 = Image.fromarray((img * 255).astype('uint8'), "L") + img2.save(path) + +# TODO: reformat to follow new class... it function of complexity now +''' +def _distorter_tests(): + #import pylab + #pylab.imshow(img) + #pylab.show() + + for letter in ("d", "a", "n", "o"): + img = _load_image("tests/" + letter + ".png") + for alpha in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0): + for sigma in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0): + id = LocalElasticDistorter((32,32)) + img2 = id.distort_image(img) + img2 = Image.fromarray((img2 * 255).astype('uint8'), "L") + img2.save("tests/"+letter+"_alpha"+str(alpha)+"_sigma"+str(sigma)+".png") +''' + +def _benchmark(): + img = _load_image("tests/d.png") + dist = LocalElasticDistorter((32,32)) + dist.regenerate_parameters(0.0) + import time + t1 = time.time() + for i in range(10000): + if i % 1000 == 0: + print "-" + dist.distort_image(img) + t2 = time.time() + print "t2-t1", t2-t1 + print "avg", 10000/(t2-t1) + +if __name__ == '__main__': + import time + import pylab + import Image + import os.path + #_distorter_tests() + #_benchmark() + #_specific_test() + #_complexity_tests() + _complexity_benchmark() + + +