diff data_generation/transformations/PermutPixel.py @ 167:1f5937e9e530

More moves - transformations into data_generation, added "deep" folder
author Dumitru Erhan <dumitru.erhan@gmail.com>
date Fri, 26 Feb 2010 14:15:38 -0500
parents transformations/PermutPixel.py@7640cb31cf1f
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/data_generation/transformations/PermutPixel.py	Fri Feb 26 14:15:38 2010 -0500
@@ -0,0 +1,114 @@
+#!/usr/bin/python
+# coding: utf-8
+
+'''
+Un echange de pixels est effectue entre certain pixels choisit aleatoirement
+et un de ses 4 voisins, tout aussi choisi aleatoirement.
+
+Le nombre de pixels permutes est definit pas complexity*1024
+
+Il y a proba 20% d'effectuer le bruitage
+
+Sylvain Pannetier Lebeuf dans le cadre de IFT6266, hiver 2010
+
+'''
+
+import numpy
+import random
+
+class PermutPixel():
+    
+    def __init__(self,seed=7152):
+        self.nombre=10 #Le nombre de pixels a permuter
+        self.proportion=0.3
+        self.effectuer=1    #1=on effectue, 0=rien faire
+        self.seed=seed
+        
+        #Les deux generateurs sont de types differents, avoir la meme seed n'a pas d'influence
+        #numpy.random.seed(self.seed)
+        #random.seed(self.seed)
+        
+    def get_seed(self):
+        return self.seed
+        
+    def get_settings_names(self):
+        return ['effectuer']
+    
+    def get_settings_names_determined_by_complexity(self,complexity):
+        return ['nombre']
+
+    def regenerate_parameters(self, complexity):
+        self.proportion=float(complexity)/3
+        self.nombre=int(256*self.proportion)*4   #Par multiple de 4 (256=1024/4)
+        self.echantillon=random.sample(xrange(0,1024),self.nombre)  #Les pixels qui seront permutes
+        self.effectuer =numpy.random.binomial(1,0.2)    ##### On a 20% de faire un bruit #####
+        return self._get_current_parameters()
+
+    def _get_current_parameters(self):
+        return [self.effectuer]  
+    
+    def get_parameters_determined_by_complexity(self, complexity):
+        return [int(complexity*256)*4]
+    
+    def transform_image(self, image):
+        if self.effectuer==0:
+            return image
+        
+        image=image.reshape(1024,1)
+        temp=0  #variable temporaire
+
+        for i in xrange(0,self.nombre,4):   #Par bonds de 4
+            #gauche
+            if self.echantillon[i] > 0:
+                temp=image[self.echantillon[i]-1]
+                image[self.echantillon[i]-1]=image[self.echantillon[i]]
+                image[self.echantillon[i]]=temp
+            #droite
+            if self.echantillon[i+1] < 1023:
+                temp=image[self.echantillon[i+1]+1]
+                image[self.echantillon[i+1]+1]=image[self.echantillon[i+1]]
+                image[self.echantillon[i+1]]=temp
+            #haut
+            if self.echantillon[i+2] > 31:
+                temp=image[self.echantillon[i+2]-32]
+                image[self.echantillon[i+2]-32]=image[self.echantillon[i+2]]
+                image[self.echantillon[i+2]]=temp
+            #bas
+            if self.echantillon[i+3] < 992:
+                temp=image[self.echantillon[i+3]+32]
+                image[self.echantillon[i+3]+32]=image[self.echantillon[i+3]]
+                image[self.echantillon[i+3]]=temp
+            
+            
+        return image.reshape((32,32))
+
+
+#---TESTS---
+
+def _load_image():
+    f = open('/home/sylvain/Dropbox/Msc/IFT6266/donnees/lower_test_data.ft')  #Le jeu de donnees est en local. 
+    d = ft.read(f)
+    w=numpy.asarray(d[random.randint(0,100)])
+    return (w/255.0).astype('float')
+
+def _test(complexite):
+    img=_load_image()
+    transfo = PermutPixel()
+    pylab.imshow(img.reshape((32,32)))
+    pylab.show()
+    print transfo.get_settings_names()
+    print transfo.regenerate_parameters(complexite)
+    
+    img_trans=transfo.transform_image(img)
+    
+    pylab.imshow(img_trans.reshape((32,32)))
+    pylab.show()
+    
+
+if __name__ == '__main__':
+    from pylearn.io import filetensor as ft
+    import pylab
+    for i in xrange(0,5):
+        _test(0.5)
+
+