Mercurial > ift6266
diff data_generation/transformations/BruitGauss.py @ 167:1f5937e9e530
More moves - transformations into data_generation, added "deep" folder
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:15:38 -0500 |
parents | transformations/BruitGauss.py@7640cb31cf1f |
children | d5b2b6397a5a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/data_generation/transformations/BruitGauss.py Fri Feb 26 14:15:38 2010 -0500 @@ -0,0 +1,138 @@ +#!/usr/bin/python +# coding: utf-8 + +''' +Ajout de bruit gaussien dans les donnees. A chaque iteration, un bruit poivre +et sel est ajoute, puis un lissage gaussien autour de ce point est ajoute. +On fait un nombre d'iteration = 1024*complexity/25 ce qui equivaud +a complexity/25 des points qui recoivent le centre du noyau gaussien. +Il y en a beaucoup moins que le bruit poivre et sel, car la transformation +est plutôt aggressive et touche beaucoup de pixels autour du centre + +La grandeur de la gaussienne ainsi que son ecart type sont definit par complexity +et par une composante aleatoire normale. + +On a 25 % de chances d'effectuer le bruitage + +Ce fichier prend pour acquis que les images sont donnees une a la fois +sous forme de numpy.array de 1024 (32 x 32) valeurs entre 0 et 1. + +Sylvain Pannetier Lebeuf dans le cadre de IFT6266, hiver 2010 + +''' + +import numpy +#import random +import scipy +from scipy import ndimage + +class BruitGauss(): + + def __init__(self,complexity=1,seed=6378): + self.nb_chngmax =10 #Le nombre de pixels changes. Seulement pour fin de calcul + self.grandeurmax = 20 + self.sigmamax = 6.0 + self.regenerate_parameters(complexity) + self.seed=seed + + #numpy.random.seed(self.seed) + + def get_seed(self): + return self.seed + + def get_settings_names(self): + return ['nb_chng','sigma_gauss','grandeur'] + + def regenerate_parameters(self, complexity): + self.effectuer =numpy.random.binomial(1,0.25) ##### On a 25% de faire un bruit ##### + + + if self.effectuer and complexity > 0: + self.nb_chng=3+int(numpy.random.rand()*self.nb_chngmax*complexity) + self.sigma_gauss=2.0 + numpy.random.rand()*self.sigmamax*complexity + self.grandeur=12+int(numpy.random.rand()*self.grandeurmax*complexity) + #creation du noyau gaussien + self.gauss=numpy.zeros((self.grandeur,self.grandeur)) + x0 = y0 = self.grandeur/2.0 + for i in xrange(self.grandeur): + for j in xrange(self.grandeur): + self.gauss[i,j]=numpy.exp(-((i-x0)**2 + (j-y0)**2) / self.sigma_gauss**2) + #creation de la fenetre de moyennage + self.moy=numpy.zeros((self.grandeur,self.grandeur)) + x0 = y0 = self.grandeur/2 + for i in xrange(0,self.grandeur): + for j in xrange(0,self.grandeur): + self.moy[i,j]=((numpy.sqrt(2*(self.grandeur/2.0)**2) -\ + numpy.sqrt(numpy.abs(i-self.grandeur/2.0)**2+numpy.abs(j-self.grandeur/2.0)**2))/numpy.sqrt((self.grandeur/2.0)**2))**5 + else: + self.sigma_gauss = 1 # eviter division par 0 + self.grandeur=1 + self.nb_chng = 0 + self.effectuer = 0 + + return self._get_current_parameters() + + def _get_current_parameters(self): + return [self.nb_chng,self.sigma_gauss,self.grandeur] + + + def transform_image(self, image): + if self.effectuer == 0: + return image + image=image.reshape((32,32)) + filtered_image = ndimage.convolve(image,self.gauss,mode='constant') + assert image.shape == filtered_image.shape + filtered_image = (filtered_image - filtered_image.min() + image.min()) / (filtered_image.max() - filtered_image.min() + image.min()) * image.max() + + #construction of the moyennage Mask + Mask = numpy.zeros((32,32)) + + for i in xrange(0,self.nb_chng): + x_bruit=int(numpy.random.randint(0,32)) + y_bruit=int(numpy.random.randint(0,32)) + offsetxmin = 0 + offsetxmax = 0 + offsetymin = 0 + offsetymax = 0 + if x_bruit < self.grandeur / 2: + offsetxmin = self.grandeur / 2 - x_bruit + if 32-x_bruit < numpy.ceil(self.grandeur / 2.0): + offsetxmax = numpy.ceil(self.grandeur / 2.0) - (32-x_bruit) + if y_bruit < self.grandeur / 2: + offsetymin = self.grandeur / 2 - y_bruit + if 32-y_bruit < numpy.ceil(self.grandeur / 2.0): + offsetymax = numpy.ceil(self.grandeur / 2.0) - (32-y_bruit) + Mask[x_bruit - self.grandeur/2 + offsetxmin : x_bruit + numpy.ceil(self.grandeur/2.0) - offsetxmax,\ + y_bruit - self.grandeur/2 + offsetymin : y_bruit + numpy.ceil(self.grandeur/2.0)- offsetymax] +=\ + self.moy[offsetxmin:self.grandeur - offsetxmax,offsetymin:self.grandeur - offsetymax] + + return numpy.asarray((image + filtered_image*Mask)/(Mask+1),dtype='float32') + +#---TESTS--- + +def _load_image(): + f = open('/home/sylvain/Dropbox/Msc/IFT6266/donnees/lower_test_data.ft') #Le jeu de donnees est en local. + d = ft.read(f) + w=numpy.asarray(d[0]) + return (w/255.0).astype('float') + +def _test(complexite): + img=_load_image() + transfo = BruitGauss() + pylab.imshow(img.reshape((32,32))) + pylab.show() + print transfo.get_settings_names() + print transfo.regenerate_parameters(complexite) + + img_trans=transfo.transform_image(img) + + pylab.imshow(img_trans.reshape((32,32))) + pylab.show() + + +if __name__ == '__main__': + from pylearn.io import filetensor as ft + import pylab + _test(0.5) + +