diff deep/stacked_dae/v_sylvain/stacked_dae.py @ 266:1e4e60ddadb1

Merge. Ah, et dans le dernier commit, j'avais oublié de mentionner que j'ai ajouté du code pour gérer l'isolation de différents clones pour rouler des expériences et modifier le code en même temps.
author fsavard
date Fri, 19 Mar 2010 10:56:16 -0400
parents 02b141a466b4
children c77ffb11f91d
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/stacked_dae.py	Fri Mar 19 10:54:39 2010 -0400
+++ b/deep/stacked_dae/v_sylvain/stacked_dae.py	Fri Mar 19 10:56:16 2010 -0400
@@ -165,9 +165,9 @@
 
 
 class SdA(object):
-    def __init__(self, train_set_x, train_set_y, batch_size, n_ins, 
+    def __init__(self, batch_size, n_ins, 
                  hidden_layers_sizes, n_outs, 
-                 corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0):
+                 corruption_levels, rng, pretrain_lr, finetune_lr):
         # Just to make sure those are not modified somewhere else afterwards
         hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes)
         corruption_levels = copy.deepcopy(corruption_levels)
@@ -190,23 +190,17 @@
         print "n_outs", n_outs
         print "pretrain_lr", pretrain_lr
         print "finetune_lr", finetune_lr
-        print "input_divider", input_divider
         print "----"
 
-        #self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX))
-
         if len(hidden_layers_sizes) < 1 :
             raiseException (' You must have at least one hidden layer ')
 
 
         # allocate symbolic variables for the data
-        ##index   = T.lscalar()    # index to a [mini]batch 
+        #index   = T.lscalar()    # index to a [mini]batch 
         self.x  = T.matrix('x')  # the data is presented as rasterized images
         self.y  = T.ivector('y') # the labels are presented as 1D vector of 
                                  # [int] labels
-        ensemble = T.matrix('ensemble')
-        ensemble_x = T.matrix('ensemble_x')
-        ensemble_y = T.ivector('ensemble_y')
 
         for i in xrange( self.n_layers ):
             # construct the sigmoidal layer
@@ -250,10 +244,15 @@
                 updates[param] = param - gparam * pretrain_lr
             
             # create a function that trains the dA
-            update_fn = theano.function([ensemble], dA_layer.cost, \
-                  updates = updates,
-                  givens = { 
-                     self.x : ensemble})
+            update_fn = theano.function([self.x], dA_layer.cost, \
+                  updates = updates)#,
+            #     givens = { 
+            #         self.x : ensemble})
+            # collect this function into a list
+            #update_fn = theano.function([index], dA_layer.cost, \
+            #      updates = updates,
+            #      givens = { 
+            #         self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider})
             # collect this function into a list
             self.pretrain_functions += [update_fn]
 
@@ -276,18 +275,17 @@
         for param,gparam in zip(self.params, gparams):
             updates[param] = param - gparam*finetune_lr
             
-        self.finetune = theano.function([ensemble_x,ensemble_y], cost, 
-                updates = updates,
-                givens = {
-                  #self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider,
-                  #self.y : train_set_y[index*batch_size:(index+1)*batch_size]} )
-                  self.x : ensemble_x,
-                  self.y : ensemble_y} )
+        self.finetune = theano.function([self.x,self.y], cost, 
+                updates = updates)#,
+        #        givens = {
+        #          self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider,
+        #          self.y : train_set_y[index*batch_size:(index+1)*batch_size]} )
 
         # symbolic variable that points to the number of errors made on the
         # minibatch given by self.x and self.y
 
         self.errors = self.logLayer.errors(self.y)
+        
 
 if __name__ == '__main__':
     import sys