Mercurial > ift6266
diff AMT/utils.py @ 396:116b2de2c0a4
utils for the amazon MT code
author | goldfinger |
---|---|
date | Tue, 27 Apr 2010 13:47:33 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AMT/utils.py Tue Apr 27 13:47:33 2010 -0400 @@ -0,0 +1,125 @@ +""" This file contains different utility functions that are not connected +in anyway to the networks presented in the tutorials, but rather help in +processing the outputs into a more understandable way. + +For example ``tile_raster_images`` helps in generating a easy to grasp +image from a set of samples or weights. +""" + + +import numpy + + +def scale_to_unit_interval(ndar,eps=1e-8): + """ Scales all values in the ndarray ndar to be between 0 and 1 """ + ndar = ndar.copy() + ndar -= ndar.min() + ndar *= 1.0 / (ndar.max()+eps) + return ndar + + +def tile_raster_images(X, img_shape, tile_shape,tile_spacing = (0,0), + scale_rows_to_unit_interval = True, output_pixel_vals = True): + """ + Transform an array with one flattened image per row, into an array in + which images are reshaped and layed out like tiles on a floor. + + This function is useful for visualizing datasets whose rows are images, + and also columns of matrices for transforming those rows + (such as the first layer of a neural net). + + :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can + be 2-D ndarrays or None; + :param X: a 2-D array in which every row is a flattened image. + + :type img_shape: tuple; (height, width) + :param img_shape: the original shape of each image + + :type tile_shape: tuple; (rows, cols) + :param tile_shape: the number of images to tile (rows, cols) + + :param output_pixel_vals: if output should be pixel values (i.e. int8 + values) or floats + + :param scale_rows_to_unit_interval: if the values need to be scaled before + being plotted to [0,1] or not + + + :returns: array suitable for viewing as an image. + (See:`PIL.Image.fromarray`.) + :rtype: a 2-d array with same dtype as X. + + """ + + assert len(img_shape) == 2 + assert len(tile_shape) == 2 + assert len(tile_spacing) == 2 + + # The expression below can be re-written in a more C style as + # follows : + # + # out_shape = [0,0] + # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] - + # tile_spacing[0] + # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] - + # tile_spacing[1] + out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp + in zip(img_shape, tile_shape, tile_spacing)] + + if isinstance(X, tuple): + assert len(X) == 4 + # Create an output numpy ndarray to store the image + if output_pixel_vals: + out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') + else: + out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) + + #colors default to 0, alpha defaults to 1 (opaque) + if output_pixel_vals: + channel_defaults = [0,0,0,255] + else: + channel_defaults = [0.,0.,0.,1.] + + for i in xrange(4): + if X[i] is None: + # if channel is None, fill it with zeros of the correct + # dtype + out_array[:,:,i] = numpy.zeros(out_shape, + dtype='uint8' if output_pixel_vals else out_array.dtype + )+channel_defaults[i] + else: + # use a recurrent call to compute the channel and store it + # in the output + out_array[:,:,i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) + return out_array + + else: + # if we are dealing with only one channel + H, W = img_shape + Hs, Ws = tile_spacing + + # generate a matrix to store the output + out_array = numpy.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype) + + + for tile_row in xrange(tile_shape[0]): + for tile_col in xrange(tile_shape[1]): + if tile_row * tile_shape[1] + tile_col < X.shape[0]: + if scale_rows_to_unit_interval: + # if we should scale values to be between 0 and 1 + # do this by calling the `scale_to_unit_interval` + # function + this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)) + else: + this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) + # add the slice to the corresponding position in the + # output array + out_array[ + tile_row * (H+Hs):tile_row*(H+Hs)+H, + tile_col * (W+Ws):tile_col*(W+Ws)+W + ] \ + = this_img * (255 if output_pixel_vals else 1) + return out_array + + +