diff scripts/stacked_dae.py @ 114:0b4080394f2c

Added stacked DAE code for my experiments, based on tutorial code. Quite unfinished.
author fsavard
date Wed, 17 Feb 2010 09:29:19 -0500
parents
children 4f37755d301b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/stacked_dae.py	Wed Feb 17 09:29:19 2010 -0500
@@ -0,0 +1,422 @@
+#!/usr/bin/python
+# coding: utf-8
+
+# Code for stacked denoising autoencoder
+# Tests with MNIST
+# TODO: adapt for NIST
+# Based almost entirely on deeplearning.net tutorial, modifications by
+# François Savard
+
+# Base LogisticRegression, SigmoidalLayer, dA, SdA code taken
+# from the deeplearning.net tutorial. Refactored a bit.
+# Changes (mainly):
+# - splitted initialization in smaller methods
+# - removed the "givens" thing involving an index in the whole dataset
+#       (to allow flexibility in how data is inputted... not necessarily one big tensor)
+# - changed the "driver" a lot, altough for the moment the same logic is used
+
+import time
+import theano
+import theano.tensor as T
+import theano.tensor.nnet
+from theano.tensor.shared_randomstreams import RandomStreams
+import numpy, numpy.random
+
+from pylearn.datasets import MNIST
+
+
+# from pylearn codebase
+def update_locals(obj, dct):
+    if 'self' in dct:
+        del dct['self']
+    obj.__dict__.update(dct)
+
+
+class LogisticRegression(object):
+    def __init__(self, input, n_in, n_out):
+        # initialize with 0 the weights W as a matrix of shape (n_in, n_out) 
+        self.W = theano.shared(value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX),
+                                name='W')
+        # initialize the baises b as a vector of n_out 0s
+        self.b = theano.shared(value=numpy.zeros((n_out,), dtype = theano.config.floatX),
+                               name='b')
+
+        # compute vector of class-membership probabilities in symbolic form
+        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
+
+        # compute prediction as class whose probability is maximal in 
+        # symbolic form
+        self.y_pred=T.argmax(self.p_y_given_x, axis=1)
+
+        self.params = [self.W, self.b]
+
+    def negative_log_likelihood(self, y):
+        return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
+
+    def errors(self, y):
+        # check if y has same dimension of y_pred 
+        if y.ndim != self.y_pred.ndim:
+            raise TypeError('y should have the same shape as self.y_pred', 
+                ('y', target.type, 'y_pred', self.y_pred.type))
+        # check if y is of the correct datatype        
+        if y.dtype.startswith('int'):
+            # the T.neq operator returns a vector of 0s and 1s, where 1
+            # represents a mistake in prediction
+            return T.mean(T.neq(self.y_pred, y))
+        else:
+            raise NotImplementedError()
+
+
+class SigmoidalLayer(object):
+    def __init__(self, rng, input, n_in, n_out):
+        self.input = input
+
+        W_values = numpy.asarray( rng.uniform( \
+              low = -numpy.sqrt(6./(n_in+n_out)), \
+              high = numpy.sqrt(6./(n_in+n_out)), \
+              size = (n_in, n_out)), dtype = theano.config.floatX)
+        self.W = theano.shared(value = W_values)
+
+        b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
+        self.b = theano.shared(value= b_values)
+
+        self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b)
+        self.params = [self.W, self.b]
+
+
+class dA(object):
+    def __init__(self, n_visible= 784, n_hidden= 500, \
+              corruption_level = 0.1, input = None, \
+              shared_W = None, shared_b = None):
+        update_locals(self, locals())
+
+        self.init_randomizer()
+        self.init_params()
+        self.init_functions()
+
+    def init_randomizer(self):
+        # create a Theano random generator that gives symbolic random values
+        self.theano_rng = RandomStreams()
+        # create a numpy random generator
+        self.numpy_rng = numpy.random.RandomState()
+
+    def init_params(self):
+        if self.shared_W != None and self.shared_b != None :
+            self.W = self.shared_W
+            self.b = self.shared_b
+        else:
+            # initial values for weights and biases
+            # note : W' was written as `W_prime` and b' as `b_prime`
+
+            # W is initialized with `initial_W` which is uniformely sampled
+            # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible)
+            # the output of uniform if converted using asarray to dtype
+            # theano.config.floatX so that the code is runable on GPU
+            initial_W = numpy.asarray( self.numpy_rng.uniform( \
+                 low  = -numpy.sqrt(6./(n_hidden+n_visible)), \
+                 high = numpy.sqrt(6./(n_hidden+n_visible)), \
+                 size = (n_visible, n_hidden)), dtype = theano.config.floatX)
+            initial_b = numpy.zeros(n_hidden)
+
+            # theano shared variables for weights and biases
+            self.W = theano.shared(value = initial_W, name = "W")
+            self.b = theano.shared(value = initial_b, name = "b")
+
+        initial_b_prime= numpy.zeros(self.n_visible)
+        # tied weights, therefore W_prime is W transpose
+        self.W_prime = self.W.T
+        self.b_prime = theano.shared(value = initial_b_prime, name = "b'")
+
+    def init_functions(self):
+        # if no input is given, generate a variable representing the input
+        if self.input == None :
+            # we use a matrix because we expect a minibatch of several examples,
+            # each example being a row
+            self.x = T.dmatrix(name = 'input')
+        else:
+            self.x = self.input
+
+        # keep 90% of the inputs the same and zero-out randomly selected subset of 
+        # 10% of the inputs
+        # note : first argument of theano.rng.binomial is the shape(size) of
+        #        random numbers that it should produce
+        #        second argument is the number of trials
+        #        third argument is the probability of success of any trial
+        #
+        #        this will produce an array of 0s and 1s where 1 has a
+        #        probability of 1 - ``corruption_level`` and 0 with
+        #        ``corruption_level``
+        self.tilde_x = self.theano_rng.binomial(self.x.shape, 1, 1-self.corruption_level) * self.x
+        # using tied weights
+        self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W) + self.b)
+        self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime)
+        self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 )
+        # note : L is now a vector, where each element is the cross-entropy cost
+        #        of the reconstruction of the corresponding example of the
+        #        minibatch. We need to compute the average of all these to get
+        #        the cost of the minibatch
+        self.cost = T.mean(self.L)
+
+        self.params = [ self.W, self.b, self.b_prime ]
+
+class SdA():
+    def __init__(self, batch_size, n_ins,
+               hidden_layers_sizes, n_outs,
+               corruption_levels, rng, pretrain_lr, finetune_lr):
+        update_locals(self, locals())
+
+        self.layers             = []
+        self.pretrain_functions = []
+        self.params             = []
+        self.n_layers           = len(hidden_layers_sizes)
+
+        if len(hidden_layers_sizes) < 1 :
+            raiseException (' You must have at least one hidden layer ')
+
+        # allocate symbolic variables for the data
+        self.x = T.matrix('x')  # the data is presented as rasterized images
+        self.y = T.ivector('y') # the labels are presented as 1D vector of
+                               # [int] labels
+
+        self.create_layers()
+        self.init_finetuning()
+
+    def create_layers(self):
+        for i in xrange( self.n_layers ):
+            # construct the sigmoidal layer
+
+            # the size of the input is either the number of hidden units of
+            # the layer below or the input size if we are on the first layer
+            if i == 0 :
+                input_size = self.n_ins
+            else:
+                input_size = self.hidden_layers_sizes[i-1]
+
+            # the input to this layer is either the activation of the hidden
+            # layer below or the input of the SdA if you are on the first
+            # layer
+            if i == 0 :
+                layer_input = self.x
+            else:
+                layer_input = self.layers[-1].output
+
+            layer = SigmoidalLayer(self.rng, layer_input, input_size,
+                                   self.hidden_layers_sizes[i] )
+            # add the layer to the
+            self.layers += [layer]
+            self.params += layer.params
+
+            # Construct a denoising autoencoder that shared weights with this
+            # layer
+            dA_layer = dA(input_size, self.hidden_layers_sizes[i], \
+                          corruption_level = self.corruption_levels[0],\
+                          input = layer_input, \
+                          shared_W = layer.W, shared_b = layer.b)
+
+            self.init_updates_for_layer(dA_layer)
+
+    def init_updates_for_layer(self, dA_layer):
+        # Construct a function that trains this dA
+        # compute gradients of layer parameters
+        gparams = T.grad(dA_layer.cost, dA_layer.params)
+        # compute the list of updates
+        updates = {}
+        for param, gparam in zip(dA_layer.params, gparams):
+            updates[param] = param - gparam * self.pretrain_lr
+
+        # create a function that trains the dA
+        update_fn = theano.function([self.x], dA_layer.cost, \
+              updates = updates)
+
+        # collect this function into a list
+        self.pretrain_functions += [update_fn]
+
+    def init_finetuning(self):
+        # We now need to add a logistic layer on top of the MLP
+        self.logLayer = LogisticRegression(\
+                         input = self.layers[-1].output,\
+                         n_in = self.hidden_layers_sizes[-1], n_out = self.n_outs)
+
+        self.params += self.logLayer.params
+        # construct a function that implements one step of finetunining
+
+        # compute the cost, defined as the negative log likelihood
+        cost = self.logLayer.negative_log_likelihood(self.y)
+        # compute the gradients with respect to the model parameters
+        gparams = T.grad(cost, self.params)
+        # compute list of updates
+        updates = {}
+        for param,gparam in zip(self.params, gparams):
+            updates[param] = param - gparam*self.finetune_lr
+
+        self.finetune = theano.function([self.x, self.y], cost,
+                updates = updates)
+
+        # symbolic variable that points to the number of errors made on the
+        # minibatch given by self.x and self.y
+
+        self.errors = self.logLayer.errors(self.y)
+
+class MnistIterators:
+    def __init__(self, minibatch_size):
+        self.minibatch_size = minibatch_size
+
+        self.mnist = MNIST.first_1k()
+
+        self.len_train = len(self.mnist.train.x)
+        self.len_valid = len(self.mnist.valid.x)
+        self.len_test = len(self.mnist.test.x)
+
+    def train_x_batches(self):
+        idx = 0
+        while idx < len(self.mnist.train.x):
+            yield self.mnist.train.x[idx:idx+self.minibatch_size]
+            idx += self.minibatch_size
+
+    def train_xy_batches(self):
+        idx = 0
+        while idx < len(self.mnist.train.x):
+            mb_x = self.mnist.train.x[idx:idx+self.minibatch_size]
+            mb_y = self.mnist.train.y[idx:idx+self.minibatch_size]
+            yield mb_x, mb_y
+            idx += self.minibatch_size
+
+    def valid_xy_batches(self):
+        idx = 0
+        while idx < len(self.mnist.valid.x):
+            mb_x = self.mnist.valid.x[idx:idx+self.minibatch_size]
+            mb_y = self.mnist.valid.y[idx:idx+self.minibatch_size]
+            yield mb_x, mb_y
+            idx += self.minibatch_size
+
+
+class MnistTrainingDriver:
+    def __init__(self, rng=numpy.random):
+        self.rng = rng
+
+        self.init_SdA()
+
+    def init_SdA(self):
+        # Hyperparam
+        hidden_layers_sizes = [1000, 1000, 1000]
+        n_outs = 10
+        corruption_levels = [0.2, 0.2, 0.2]
+        minibatch_size = 10
+        pretrain_lr = 0.001
+        finetune_lr = 0.001
+
+        update_locals(self, locals())
+
+        self.mnist = MnistIterators(minibatch_size)
+
+        # construct the stacked denoising autoencoder class
+        self.classifier = SdA( batch_size = minibatch_size, \
+                          n_ins=28*28, \
+                          hidden_layers_sizes = hidden_layers_sizes, \
+                          n_outs=n_outs, \
+                          corruption_levels = corruption_levels,\
+                          rng = self.rng,\
+                          pretrain_lr = pretrain_lr, \
+                          finetune_lr = finetune_lr) 
+
+    def compute_validation_error(self):
+        validation_error = 0.0
+
+        count = 0
+        for mb_x, mb_y in self.mnist.valid_xy_batches():
+            validation_error += self.classifier.errors(mb_x, mb_y)
+            count += 1
+
+        return float(validation_error) / count
+
+    def pretrain(self):
+        pretraining_epochs = 20
+
+        for layer_idx, update_fn in enumerate(self.classifier.pretrain_functions):
+            for epoch in xrange(pretraining_epochs):
+                # go through the training set
+                cost_acc = 0.0
+                for i, mb_x in enumerate(self.mnist.train_x_batches()):
+                    cost_acc += update_fn(mb_x)
+                    
+                    if i % 100 == 0:
+                        print i, "avg err = ", cost_acc / 100.0
+                        cost_acc = 0.0
+                print 'Pre-training layer %d, epoch %d' % (layer_idx, epoch)
+
+    def finetune(self):
+        max_training_epochs = 1000
+
+        n_train_batches = self.mnist.len_train / self.minibatch_size
+
+        # early-stopping parameters
+        patience = 10000 # look as this many examples regardless
+        patience_increase = 2. # wait this much longer when a new best is
+                                      # found
+        improvement_threshold = 0.995 # a relative improvement of this much is
+                                      # considered significant
+        validation_frequency = min(n_train_batches, patience/2)
+                                      # go through this many
+                                      # minibatche before checking the network
+                                      # on the validation set; in this case we
+                                      # check every epoch
+     
+     
+        # TODO: use this
+        best_params = None
+        best_validation_loss = float('inf')
+        test_score = 0.
+        start_time = time.clock()
+     
+        done_looping = False
+        epoch = 0
+     
+        while (epoch < max_training_epochs) and (not done_looping):
+            epoch = epoch + 1
+            for minibatch_index, (mb_x, mb_y) in enumerate(self.mnist.train_xy_batches()):
+                cost_ij = classifier.finetune(mb_x, mb_y)
+                iter = epoch * n_train_batches + minibatch_index
+         
+                if (iter+1) % validation_frequency == 0:
+                    this_validation_loss = self.compute_validation_error()
+                    print('epoch %i, minibatch %i/%i, validation error %f %%' % \
+                           (epoch, minibatch_index+1, n_train_batches, \
+                            this_validation_loss*100.))
+         
+                    # if we got the best validation score until now
+                    if this_validation_loss < best_validation_loss:
+         
+                        #improve patience if loss improvement is good enough
+                        if this_validation_loss < best_validation_loss * \
+                               improvement_threshold :
+                            patience = max(patience, iter * patience_increase)
+                            print "Improving patience"
+         
+                        # save best validation score and iteration number
+                        best_validation_loss = this_validation_loss
+                        best_iter = iter
+         
+                        # test it on the test set
+                        #test_losses = [test_model(i) for i in xrange(n_test_batches)]
+                        #test_score = numpy.mean(test_losses)
+                        #print((' epoch %i, minibatch %i/%i, test error of best '
+                        #      'model %f %%') %
+                        #             (epoch, minibatch_index+1, n_train_batches,
+                        #              test_score*100.))
+     
+     
+            if patience <= iter :
+                done_looping = True
+                break
+
+def train():
+    driver = MnistTrainingDriver()
+    start_time = time.clock()
+    driver.pretrain()
+    print "PRETRAINING DONE. STARTING FINETUNING."
+    driver.finetune()
+    end_time = time.clock()
+
+if __name__ == '__main__':
+    train()
+