Mercurial > ift6266
diff deep/stacked_dae/v_sylvain/stacked_dae.py @ 251:02b141a466b4
ajout de fonctionnalite pour different finetune dataset
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Tue, 16 Mar 2010 21:24:30 -0400 |
parents | ecb69e17950b |
children | c77ffb11f91d |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/stacked_dae.py Tue Mar 16 21:24:09 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/stacked_dae.py Tue Mar 16 21:24:30 2010 -0400 @@ -165,9 +165,9 @@ class SdA(object): - def __init__(self, train_set_x, train_set_y, batch_size, n_ins, + def __init__(self, batch_size, n_ins, hidden_layers_sizes, n_outs, - corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0): + corruption_levels, rng, pretrain_lr, finetune_lr): # Just to make sure those are not modified somewhere else afterwards hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes) corruption_levels = copy.deepcopy(corruption_levels) @@ -190,23 +190,17 @@ print "n_outs", n_outs print "pretrain_lr", pretrain_lr print "finetune_lr", finetune_lr - print "input_divider", input_divider print "----" - #self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX)) - if len(hidden_layers_sizes) < 1 : raiseException (' You must have at least one hidden layer ') # allocate symbolic variables for the data - ##index = T.lscalar() # index to a [mini]batch + #index = T.lscalar() # index to a [mini]batch self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels - ensemble = T.matrix('ensemble') - ensemble_x = T.matrix('ensemble_x') - ensemble_y = T.ivector('ensemble_y') for i in xrange( self.n_layers ): # construct the sigmoidal layer @@ -250,10 +244,15 @@ updates[param] = param - gparam * pretrain_lr # create a function that trains the dA - update_fn = theano.function([ensemble], dA_layer.cost, \ - updates = updates, - givens = { - self.x : ensemble}) + update_fn = theano.function([self.x], dA_layer.cost, \ + updates = updates)#, + # givens = { + # self.x : ensemble}) + # collect this function into a list + #update_fn = theano.function([index], dA_layer.cost, \ + # updates = updates, + # givens = { + # self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider}) # collect this function into a list self.pretrain_functions += [update_fn] @@ -276,18 +275,17 @@ for param,gparam in zip(self.params, gparams): updates[param] = param - gparam*finetune_lr - self.finetune = theano.function([ensemble_x,ensemble_y], cost, - updates = updates, - givens = { - #self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider, - #self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) - self.x : ensemble_x, - self.y : ensemble_y} ) + self.finetune = theano.function([self.x,self.y], cost, + updates = updates)#, + # givens = { + # self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider, + # self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) + if __name__ == '__main__': import sys