Mercurial > ift6266
comparison code_tutoriel/mlp.py @ 0:fda5f787baa6
commit initial
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Thu, 21 Jan 2010 11:26:43 -0500 |
parents | |
children | bcc87d3e33a3 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:fda5f787baa6 |
---|---|
1 """ | |
2 This tutorial introduces the multilayer perceptron using Theano. | |
3 | |
4 A multilayer perceptron is a logistic regressor where | |
5 instead of feeding the input to the logistic regression you insert a | |
6 intermidiate layer, called the hidden layer, that has a nonlinear | |
7 activation function (usually tanh or sigmoid) . One can use many such | |
8 hidden layers making the architecture deep. The tutorial will also tackle | |
9 the problem of MNIST digit classification. | |
10 | |
11 .. math:: | |
12 | |
13 f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), | |
14 | |
15 References: | |
16 | |
17 - textbooks: "Pattern Recognition and Machine Learning" - | |
18 Christopher M. Bishop, section 5 | |
19 | |
20 TODO: recommended preprocessing, lr ranges, regularization ranges (explain | |
21 to do lr first, then add regularization) | |
22 | |
23 """ | |
24 __docformat__ = 'restructedtext en' | |
25 | |
26 | |
27 import numpy, cPickle, gzip | |
28 | |
29 | |
30 import theano | |
31 import theano.tensor as T | |
32 | |
33 import time | |
34 | |
35 import theano.tensor.nnet | |
36 | |
37 class MLP(object): | |
38 """Multi-Layer Perceptron Class | |
39 | |
40 A multilayer perceptron is a feedforward artificial neural network model | |
41 that has one layer or more of hidden units and nonlinear activations. | |
42 Intermidiate layers usually have as activation function thanh or the | |
43 sigmoid function while the top layer is a softamx layer. | |
44 """ | |
45 | |
46 | |
47 | |
48 def __init__(self, input, n_in, n_hidden, n_out): | |
49 """Initialize the parameters for the multilayer perceptron | |
50 | |
51 :param input: symbolic variable that describes the input of the | |
52 architecture (one minibatch) | |
53 | |
54 :param n_in: number of input units, the dimension of the space in | |
55 which the datapoints lie | |
56 | |
57 :param n_hidden: number of hidden units | |
58 | |
59 :param n_out: number of output units, the dimension of the space in | |
60 which the labels lie | |
61 | |
62 """ | |
63 | |
64 # initialize the parameters theta = (W1,b1,W2,b2) ; note that this | |
65 # example contains only one hidden layer, but one can have as many | |
66 # layers as he/she wishes, making the network deeper. The only | |
67 # problem making the network deep this way is during learning, | |
68 # backpropagation being unable to move the network from the starting | |
69 # point towards; this is where pre-training helps, giving a good | |
70 # starting point for backpropagation, but more about this in the | |
71 # other tutorials | |
72 | |
73 # `W1` is initialized with `W1_values` which is uniformely sampled | |
74 # from -1/sqrt(n_in) and 1/sqrt(n_in) | |
75 # the output of uniform if converted using asarray to dtype | |
76 # theano.config.floatX so that the code is runable on GPU | |
77 W1_values = numpy.asarray( numpy.random.uniform( \ | |
78 low = -numpy.sqrt(6./(n_in+n_hidden)), high = numpy.sqrt(6./(n_in+n_hidden)), \ | |
79 size = (n_in, n_hidden)), dtype = theano.config.floatX) | |
80 # `W2` is initialized with `W2_values` which is uniformely sampled | |
81 # from -1/sqrt(n_hidden) and 1/sqrt(n_hidden) | |
82 # the output of uniform if converted using asarray to dtype | |
83 # theano.config.floatX so that the code is runable on GPU | |
84 W2_values = numpy.asarray( numpy.random.uniform( | |
85 low = numpy.sqrt(6./(n_hidden+n_out)), high= numpy.sqrt(6./(n_hidden+n_out)),\ | |
86 size= (n_hidden, n_out)), dtype = theano.config.floatX) | |
87 | |
88 self.W1 = theano.shared( value = W1_values ) | |
89 self.b1 = theano.shared( value = numpy.zeros((n_hidden,), | |
90 dtype= theano.config.floatX)) | |
91 self.W2 = theano.shared( value = W2_values ) | |
92 self.b2 = theano.shared( value = numpy.zeros((n_out,), | |
93 dtype= theano.config.floatX)) | |
94 | |
95 # symbolic expression computing the values of the hidden layer | |
96 self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) | |
97 | |
98 # symbolic expression computing the values of the top layer | |
99 self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) | |
100 | |
101 # compute prediction as class whose probability is maximal in | |
102 # symbolic form | |
103 self.y_pred = T.argmax( self.p_y_given_x, axis =1) | |
104 | |
105 # L1 norm ; one regularization option is to enforce L1 norm to | |
106 # be small | |
107 self.L1 = abs(self.W1).sum() + abs(self.W2).sum() | |
108 | |
109 # square of L2 norm ; one regularization option is to enforce | |
110 # square of L2 norm to be small | |
111 self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() | |
112 | |
113 | |
114 | |
115 def negative_log_likelihood(self, y): | |
116 """Return the mean of the negative log-likelihood of the prediction | |
117 of this model under a given target distribution. | |
118 | |
119 .. math:: | |
120 | |
121 \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = | |
122 \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ | |
123 \ell (\theta=\{W,b\}, \mathcal{D}) | |
124 | |
125 | |
126 :param y: corresponds to a vector that gives for each example the | |
127 :correct label | |
128 """ | |
129 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) | |
130 | |
131 | |
132 | |
133 | |
134 def errors(self, y): | |
135 """Return a float representing the number of errors in the minibatch | |
136 over the total number of examples of the minibatch | |
137 """ | |
138 | |
139 # check if y has same dimension of y_pred | |
140 if y.ndim != self.y_pred.ndim: | |
141 raise TypeError('y should have the same shape as self.y_pred', | |
142 ('y', target.type, 'y_pred', self.y_pred.type)) | |
143 # check if y is of the correct datatype | |
144 if y.dtype.startswith('int'): | |
145 # the T.neq operator returns a vector of 0s and 1s, where 1 | |
146 # represents a mistake in prediction | |
147 return T.mean(T.neq(self.y_pred, y)) | |
148 else: | |
149 raise NotImplementedError() | |
150 | |
151 | |
152 | |
153 def sgd_optimization_mnist( learning_rate=0.01, L1_reg = 0.00, \ | |
154 L2_reg = 0.0001, n_iter=100): | |
155 """ | |
156 Demonstrate stochastic gradient descent optimization for a multilayer | |
157 perceptron | |
158 | |
159 This is demonstrated on MNIST. | |
160 | |
161 :param learning_rate: learning rate used (factor for the stochastic | |
162 gradient | |
163 | |
164 :param n_iter: number of iterations ot run the optimizer | |
165 | |
166 :param L1_reg: L1-norm's weight when added to the cost (see | |
167 regularization) | |
168 | |
169 :param L2_reg: L2-norm's weight when added to the cost (see | |
170 regularization) | |
171 """ | |
172 | |
173 # Load the dataset | |
174 f = gzip.open('mnist.pkl.gz','rb') | |
175 train_set, valid_set, test_set = cPickle.load(f) | |
176 f.close() | |
177 | |
178 # make minibatches of size 20 | |
179 batch_size = 20 # sized of the minibatch | |
180 | |
181 # Dealing with the training set | |
182 # get the list of training images (x) and their labels (y) | |
183 (train_set_x, train_set_y) = train_set | |
184 # initialize the list of training minibatches with empty list | |
185 train_batches = [] | |
186 for i in xrange(0, len(train_set_x), batch_size): | |
187 # add to the list of minibatches the minibatch starting at | |
188 # position i, ending at position i+batch_size | |
189 # a minibatch is a pair ; the first element of the pair is a list | |
190 # of datapoints, the second element is the list of corresponding | |
191 # labels | |
192 train_batches = train_batches + \ | |
193 [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] | |
194 | |
195 # Dealing with the validation set | |
196 (valid_set_x, valid_set_y) = valid_set | |
197 # initialize the list of validation minibatches | |
198 valid_batches = [] | |
199 for i in xrange(0, len(valid_set_x), batch_size): | |
200 valid_batches = valid_batches + \ | |
201 [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] | |
202 | |
203 # Dealing with the testing set | |
204 (test_set_x, test_set_y) = test_set | |
205 # initialize the list of testing minibatches | |
206 test_batches = [] | |
207 for i in xrange(0, len(test_set_x), batch_size): | |
208 test_batches = test_batches + \ | |
209 [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] | |
210 | |
211 | |
212 ishape = (28,28) # this is the size of MNIST images | |
213 | |
214 # allocate symbolic variables for the data | |
215 x = T.fmatrix() # the data is presented as rasterized images | |
216 y = T.lvector() # the labels are presented as 1D vector of | |
217 # [long int] labels | |
218 | |
219 # construct the logistic regression class | |
220 classifier = MLP( input=x.reshape((batch_size,28*28)),\ | |
221 n_in=28*28, n_hidden = 500, n_out=10) | |
222 | |
223 # the cost we minimize during training is the negative log likelihood of | |
224 # the model plus the regularization terms (L1 and L2); cost is expressed | |
225 # here symbolically | |
226 cost = classifier.negative_log_likelihood(y) \ | |
227 + L1_reg * classifier.L1 \ | |
228 + L2_reg * classifier.L2_sqr | |
229 | |
230 # compiling a theano function that computes the mistakes that are made by | |
231 # the model on a minibatch | |
232 test_model = theano.function([x,y], classifier.errors(y)) | |
233 | |
234 # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) | |
235 g_W1 = T.grad(cost, classifier.W1) | |
236 g_b1 = T.grad(cost, classifier.b1) | |
237 g_W2 = T.grad(cost, classifier.W2) | |
238 g_b2 = T.grad(cost, classifier.b2) | |
239 | |
240 # specify how to update the parameters of the model as a dictionary | |
241 updates = \ | |
242 { classifier.W1: classifier.W1 - learning_rate*g_W1 \ | |
243 , classifier.b1: classifier.b1 - learning_rate*g_b1 \ | |
244 , classifier.W2: classifier.W2 - learning_rate*g_W2 \ | |
245 , classifier.b2: classifier.b2 - learning_rate*g_b2 } | |
246 | |
247 # compiling a theano function `train_model` that returns the cost, but in | |
248 # the same time updates the parameter of the model based on the rules | |
249 # defined in `updates` | |
250 train_model = theano.function([x, y], cost, updates = updates ) | |
251 n_minibatches = len(train_batches) | |
252 | |
253 # early-stopping parameters | |
254 patience = 10000 # look as this many examples regardless | |
255 patience_increase = 2 # wait this much longer when a new best is | |
256 # found | |
257 improvement_threshold = 0.995 # a relative improvement of this much is | |
258 # considered significant | |
259 validation_frequency = n_minibatches # go through this many | |
260 # minibatche before checking the network | |
261 # on the validation set; in this case we | |
262 # check every epoch | |
263 | |
264 | |
265 best_params = None | |
266 best_validation_loss = float('inf') | |
267 test_score = 0. | |
268 start_time = time.clock() | |
269 # have a maximum of `n_iter` iterations through the entire dataset | |
270 for iter in xrange(n_iter* n_minibatches): | |
271 | |
272 # get epoch and minibatch index | |
273 epoch = iter / n_minibatches | |
274 minibatch_index = iter % n_minibatches | |
275 | |
276 # get the minibatches corresponding to `iter` modulo | |
277 # `len(train_batches)` | |
278 x,y = train_batches[ minibatch_index ] | |
279 cost_ij = train_model(x,y) | |
280 | |
281 if (iter+1) % validation_frequency == 0: | |
282 # compute zero-one loss on validation set | |
283 this_validation_loss = 0. | |
284 for x,y in valid_batches: | |
285 # sum up the errors for each minibatch | |
286 this_validation_loss += test_model(x,y) | |
287 # get the average by dividing with the number of minibatches | |
288 this_validation_loss /= len(valid_batches) | |
289 | |
290 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ | |
291 (epoch, minibatch_index+1, n_minibatches, \ | |
292 this_validation_loss*100.)) | |
293 | |
294 | |
295 # if we got the best validation score until now | |
296 if this_validation_loss < best_validation_loss: | |
297 | |
298 #improve patience if loss improvement is good enough | |
299 if this_validation_loss < best_validation_loss * \ | |
300 improvement_threshold : | |
301 patience = max(patience, iter * patience_increase) | |
302 | |
303 best_validation_loss = this_validation_loss | |
304 # test it on the test set | |
305 | |
306 test_score = 0. | |
307 for x,y in test_batches: | |
308 test_score += test_model(x,y) | |
309 test_score /= len(test_batches) | |
310 print((' epoch %i, minibatch %i/%i, test error of best ' | |
311 'model %f %%') % | |
312 (epoch, minibatch_index+1, n_minibatches, | |
313 test_score*100.)) | |
314 | |
315 if patience <= iter : | |
316 break | |
317 | |
318 end_time = time.clock() | |
319 print(('Optimization complete with best validation score of %f %%,' | |
320 'with test performance %f %%') % | |
321 (best_validation_loss * 100., test_score*100.)) | |
322 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) | |
323 | |
324 | |
325 | |
326 | |
327 | |
328 | |
329 if __name__ == '__main__': | |
330 sgd_optimization_mnist() | |
331 |