Mercurial > ift6266
comparison transformations/local_elastic_distortions.py @ 28:e5ee2c9a9517
merge
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Fri, 29 Jan 2010 14:12:09 -0500 |
parents | 010e826b41e8 |
children | b67d729ebfe3 |
comparison
equal
deleted
inserted
replaced
27:0b9350998dbe | 28:e5ee2c9a9517 |
---|---|
21 import math | 21 import math |
22 import numpy | 22 import numpy |
23 import numpy.random | 23 import numpy.random |
24 import scipy.signal # convolve2d | 24 import scipy.signal # convolve2d |
25 | 25 |
26 def raw_zeros(size): | 26 _TEST_DIR = "/home/francois/Desktop/dist_tests/" |
27 | |
28 def _raw_zeros(size): | |
27 return [[0 for i in range(size[1])] for j in range(size[0])] | 29 return [[0 for i in range(size[1])] for j in range(size[0])] |
28 | 30 |
31 class ElasticDistortionParams(): | |
32 def __init__(self, image_size, alpha=0.0, sigma=0.0): | |
33 self.image_size = image_size | |
34 self.alpha = alpha | |
35 self.sigma = sigma | |
36 | |
37 h,w = self.image_size | |
38 | |
39 self.matrix_tl_corners_rows = _raw_zeros((h,w)) | |
40 self.matrix_tl_corners_cols = _raw_zeros((h,w)) | |
41 | |
42 self.matrix_tr_corners_rows = _raw_zeros((h,w)) | |
43 self.matrix_tr_corners_cols = _raw_zeros((h,w)) | |
44 | |
45 self.matrix_bl_corners_rows = _raw_zeros((h,w)) | |
46 self.matrix_bl_corners_cols = _raw_zeros((h,w)) | |
47 | |
48 self.matrix_br_corners_rows = _raw_zeros((h,w)) | |
49 self.matrix_br_corners_cols = _raw_zeros((h,w)) | |
50 | |
51 # those will hold the precomputed ratios for | |
52 # bilinear interpolation | |
53 self.matrix_tl_multiply = numpy.zeros((h,w)) | |
54 self.matrix_tr_multiply = numpy.zeros((h,w)) | |
55 self.matrix_bl_multiply = numpy.zeros((h,w)) | |
56 self.matrix_br_multiply = numpy.zeros((h,w)) | |
57 | |
58 def alpha_sigma(self): | |
59 return [self.alpha, self.sigma] | |
60 | |
29 class LocalElasticDistorter(): | 61 class LocalElasticDistorter(): |
30 def __init__(self, image_size, kernel_size, sigma, alpha): | 62 def __init__(self, image_size): |
31 self.image_size = image_size | 63 self.image_size = image_size |
32 self.kernel_size = kernel_size | 64 |
33 self.sigma = sigma | 65 self.current_complexity = 0.0 |
34 self.alpha = alpha | 66 |
35 self.c_alpha = int(math.ceil(alpha)) | 67 # number of precomputed fields |
36 | 68 # (principle: as complexity doesn't change often, we can |
37 self.kernel = self.gen_gaussian_kernel() | 69 # precompute a certain number of fields for a given complexity, |
38 self.fields = None | 70 # each with its own parameters. That way, we have good |
39 self.regenerate_fields() | 71 # randomization, but we're much faster). |
72 self.to_precompute = 50 | |
73 | |
74 # Both use ElasticDistortionParams | |
75 self.current_params = None | |
76 self.precomputed_params = [] | |
77 | |
78 # | |
79 self.kernel_size = None | |
80 self.kernel = None | |
81 | |
82 # set some defaults | |
83 self.regenerate_parameters(0.0) | |
84 | |
85 def get_settings_names(self): | |
86 return ['alpha', 'sigma'] | |
87 | |
88 def regenerate_parameters(self, complexity): | |
89 if abs(complexity - self.current_complexity) > 1e-4: | |
90 self.current_complexity = complexity | |
91 | |
92 # complexity changed, fields must be regenerated | |
93 self.precomputed_params = [] | |
94 | |
95 if len(self.precomputed_params) <= self.to_precompute: | |
96 # not yet enough params generated, produce one more | |
97 # and append to list | |
98 new_params = self._initialize_new_params() | |
99 new_params = self._generate_fields(new_params) | |
100 self.current_params = new_params | |
101 self.precomputed_params.append(new_params) | |
102 else: | |
103 # if we have enough precomputed fields, just select one | |
104 # at random and set parameters to match what they were | |
105 # when the field was generated | |
106 idx = numpy.random.randint(0, len(self.precomputed_params)) | |
107 self.current_params = self.precomputed_params[idx] | |
108 | |
109 return self.current_params.alpha_sigma() | |
40 | 110 |
41 # adapted from http://blenderartists.org/forum/showthread.php?t=163361 | 111 # adapted from http://blenderartists.org/forum/showthread.php?t=163361 |
42 def gen_gaussian_kernel(self): | 112 def _gen_gaussian_kernel(self, sigma): |
113 # the kernel size can change DRAMATICALLY the time | |
114 # for the blur operation... so even though results are better | |
115 # with a bigger kernel, we need to compromise here | |
116 # 1*s is very different from 2*s, but there's not much difference | |
117 # between 2*s and 4*s | |
118 ks = self.kernel_size | |
119 s = sigma | |
120 target_ks = (1.5*s, 1.5*s) | |
121 if not ks is None and ks[0] == target_ks[0] and ks[1] == target_ks[1]: | |
122 # kernel size is good, ok, no need to regenerate | |
123 return | |
124 self.kernel_size = target_ks | |
43 h,w = self.kernel_size | 125 h,w = self.kernel_size |
44 a,b = h/2.0, w/2.0 | 126 a,b = h/2.0, w/2.0 |
45 y,x = numpy.ogrid[0:w, 0:h] | 127 y,x = numpy.ogrid[0:w, 0:h] |
46 s = self.sigma | |
47 gauss = numpy.exp(-numpy.square((x-a)/s))*numpy.exp(-numpy.square((y-b)/s)) | 128 gauss = numpy.exp(-numpy.square((x-a)/s))*numpy.exp(-numpy.square((y-b)/s)) |
48 # Normalize so we don't reduce image intensity | 129 # Normalize so we don't reduce image intensity |
49 return gauss/gauss.sum() | 130 self.kernel = gauss/gauss.sum() |
50 | 131 |
51 def gen_distortion_field(self): | 132 def _gen_distortion_field(self, params): |
52 field = numpy.random.uniform(-1.0, 1.0, self.image_size) | 133 self._gen_gaussian_kernel(params.sigma) |
53 return scipy.signal.convolve2d(field, self.kernel, mode='same') | 134 |
54 | 135 # we add kernel_size on all four sides so blurring |
55 def regenerate_fields(self): | 136 # with the kernel produces a smoother result on borders |
137 ks0 = self.kernel_size[0] | |
138 ks1 = self.kernel_size[1] | |
139 sz0 = self.image_size[1] + ks0 | |
140 sz1 = self.image_size[0] + ks1 | |
141 field = numpy.random.uniform(-1.0, 1.0, (sz0, sz1)) | |
142 field = scipy.signal.convolve2d(field, self.kernel, mode='same') | |
143 | |
144 # crop only image_size in the middle | |
145 field = field[ks0:ks0+self.image_size[0], ks1:ks1+self.image_size[1]] | |
146 | |
147 return params.alpha * field | |
148 | |
149 | |
150 def _initialize_new_params(self): | |
151 params = ElasticDistortionParams(self.image_size) | |
152 | |
153 cpx = self.current_complexity | |
154 # pour faire progresser la complexité un peu plus vite | |
155 # tout en gardant les extrêmes de 0.0 et 1.0 | |
156 cpx = cpx ** (1./3.) | |
157 | |
158 # the smaller the alpha, the closest the pixels are fetched | |
159 # a max of 10 is reasonable | |
160 params.alpha = cpx * 10.0 | |
161 | |
162 # the bigger the sigma, the smoother is the distortion | |
163 # max of 1 is "reasonable", but produces VERY noisy results | |
164 # And the bigger the sigma, the bigger the blur kernel, and the | |
165 # slower the field generation, btw. | |
166 params.sigma = 10.0 - (7.0 * cpx) | |
167 | |
168 return params | |
169 | |
170 def _generate_fields(self, params): | |
56 ''' | 171 ''' |
57 Here's how the code works: | 172 Here's how the code works: |
58 - We first generate "distortion fields" for x and y with these steps: | 173 - We first generate "distortion fields" for x and y with these steps: |
59 - Uniform noise over [-1, 1] in a matrix of size (h,w) | 174 - Uniform noise over [-1, 1] in a matrix of size (h,w) |
60 - Blur with a Gaussian kernel of spread sigma | 175 - Blur with a Gaussian kernel of spread sigma |
72 pixels for each new pixel. | 187 pixels for each new pixel. |
73 - Then I multiply those extracted nearby points by precomputed | 188 - Then I multiply those extracted nearby points by precomputed |
74 ratios for the bilinear interpolation. | 189 ratios for the bilinear interpolation. |
75 ''' | 190 ''' |
76 | 191 |
77 self.fields = [None, None] | 192 p = params |
78 self.fields[0] = self.alpha*self.gen_distortion_field() | 193 |
79 self.fields[1] = self.alpha*self.gen_distortion_field() | 194 dist_fields = [None, None] |
80 | 195 dist_fields[0] = self._gen_distortion_field(params) |
81 #import pylab | 196 dist_fields[1] = self._gen_distortion_field(params) |
82 #pylab.imshow(self.fields[0]) | 197 |
198 #pylab.imshow(dist_fields[0]) | |
83 #pylab.show() | 199 #pylab.show() |
84 | 200 |
85 # regenerate distortion index matrices | 201 # regenerate distortion index matrices |
86 # "_rows" are row indices | 202 # "_rows" are row indices |
87 # "_cols" are column indices | 203 # "_cols" are column indices |
88 # (separated due to the way fancy indexing works in numpy) | 204 # (separated due to the way fancy indexing works in numpy) |
89 h,w = self.image_size | 205 h,w = p.image_size |
90 | |
91 self.matrix_tl_corners_rows = raw_zeros((h,w)) | |
92 self.matrix_tl_corners_cols = raw_zeros((h,w)) | |
93 | |
94 self.matrix_tr_corners_rows = raw_zeros((h,w)) | |
95 self.matrix_tr_corners_cols = raw_zeros((h,w)) | |
96 | |
97 self.matrix_bl_corners_rows = raw_zeros((h,w)) | |
98 self.matrix_bl_corners_cols = raw_zeros((h,w)) | |
99 | |
100 self.matrix_br_corners_rows = raw_zeros((h,w)) | |
101 self.matrix_br_corners_cols = raw_zeros((h,w)) | |
102 | |
103 # those will hold the precomputed ratios for | |
104 # bilinear interpolation | |
105 self.matrix_tl_multiply = numpy.zeros((h,w)) | |
106 self.matrix_tr_multiply = numpy.zeros((h,w)) | |
107 self.matrix_bl_multiply = numpy.zeros((h,w)) | |
108 self.matrix_br_multiply = numpy.zeros((h,w)) | |
109 | 206 |
110 for y in range(h): | 207 for y in range(h): |
111 for x in range(w): | 208 for x in range(w): |
112 distort_x = self.fields[0][y,x] | 209 distort_x = dist_fields[0][y,x] |
113 distort_y = self.fields[1][y,x] | 210 distort_y = dist_fields[1][y,x] |
114 f_dy = int(math.floor(distort_y)) | 211 |
115 f_dx = int(math.floor(distort_x)) | 212 # the "target" is the coordinate we fetch color data from |
116 y0 = y+f_dy | 213 # (in the original image) |
117 x0 = x+f_dx | 214 # target_left and _top are the rounded coordinate on the |
118 index_tl = [y0, x0] | 215 # left/top of this target (float) coordinate |
119 index_tr = [y0, x0+1] | 216 target_pixel = (y+distort_y, x+distort_x) |
120 index_bl = [y0+1, x0] | 217 |
121 index_br = [y0+1, x0+1] | 218 target_left = int(math.floor(x + distort_x)) |
122 x_ratio = abs(distort_x-f_dx) # ratio of left vs right (for bilinear) | 219 target_top = int(math.floor(y + distort_y)) |
123 y_ratio = abs(distort_y-f_dy) # ratio of top vs bottom | 220 |
221 index_tl = [target_top, target_left] | |
222 index_tr = [target_top, target_left+1] | |
223 index_bl = [target_top+1, target_left] | |
224 index_br = [target_top+1, target_left+1] | |
225 | |
226 # x_ratio is the ratio of importance of left pixels | |
227 # y_ratio is the """" of top pixels | |
228 # (in bilinear combination) | |
229 y_ratio = 1.0 - (target_pixel[0] - target_top) | |
230 x_ratio = 1.0 - (target_pixel[1] - target_left) | |
124 | 231 |
125 # We use a default background color of 0 for displacements | 232 # We use a default background color of 0 for displacements |
126 # outside of boundaries of the image. | 233 # outside of boundaries of the image. |
127 | 234 |
128 # if top left outside bounds | 235 # if top left outside bounds |
129 if index_tl[0] < 0 or index_tl[0] >= h or index_tl[1] < 0 or index_tl[1] >= w: | 236 if index_tl[0] < 0 or index_tl[0] >= h or index_tl[1] < 0 or index_tl[1] >= w: |
130 self.matrix_tl_corners_rows[y][x] = 0 | 237 p.matrix_tl_corners_rows[y][x] = 0 |
131 self.matrix_tl_corners_cols[y][x] = 0 | 238 p.matrix_tl_corners_cols[y][x] = 0 |
132 self.matrix_tl_multiply[y,x] = 0 | 239 p.matrix_tl_multiply[y,x] = 0 |
133 else: | 240 else: |
134 self.matrix_tl_corners_rows[y][x] = index_tl[0] | 241 p.matrix_tl_corners_rows[y][x] = index_tl[0] |
135 self.matrix_tl_corners_cols[y][x] = index_tl[1] | 242 p.matrix_tl_corners_cols[y][x] = index_tl[1] |
136 self.matrix_tl_multiply[y,x] = x_ratio*y_ratio | 243 p.matrix_tl_multiply[y,x] = x_ratio*y_ratio |
137 | |
138 | 244 |
139 # if top right outside bounds | 245 # if top right outside bounds |
140 if index_tr[0] < 0 or index_tr[0] >= h or index_tr[1] < 0 or index_tr[1] >= w: | 246 if index_tr[0] < 0 or index_tr[0] >= h or index_tr[1] < 0 or index_tr[1] >= w: |
141 self.matrix_tr_corners_rows[y][x] = 0 | 247 p.matrix_tr_corners_rows[y][x] = 0 |
142 self.matrix_tr_corners_cols[y][x] = 0 | 248 p.matrix_tr_corners_cols[y][x] = 0 |
143 self.matrix_tr_multiply[y,x] = 0 | 249 p.matrix_tr_multiply[y,x] = 0 |
144 else: | 250 else: |
145 self.matrix_tr_corners_rows[y][x] = index_tr[0] | 251 p.matrix_tr_corners_rows[y][x] = index_tr[0] |
146 self.matrix_tr_corners_cols[y][x] = index_tr[1] | 252 p.matrix_tr_corners_cols[y][x] = index_tr[1] |
147 self.matrix_tr_multiply[y,x] = (1.0-x_ratio)*y_ratio | 253 p.matrix_tr_multiply[y,x] = (1.0-x_ratio)*y_ratio |
148 | 254 |
149 # if bottom left outside bounds | 255 # if bottom left outside bounds |
150 if index_bl[0] < 0 or index_bl[0] >= h or index_bl[1] < 0 or index_bl[1] >= w: | 256 if index_bl[0] < 0 or index_bl[0] >= h or index_bl[1] < 0 or index_bl[1] >= w: |
151 self.matrix_bl_corners_rows[y][x] = 0 | 257 p.matrix_bl_corners_rows[y][x] = 0 |
152 self.matrix_bl_corners_cols[y][x] = 0 | 258 p.matrix_bl_corners_cols[y][x] = 0 |
153 self.matrix_bl_multiply[y,x] = 0 | 259 p.matrix_bl_multiply[y,x] = 0 |
154 else: | 260 else: |
155 self.matrix_bl_corners_rows[y][x] = index_bl[0] | 261 p.matrix_bl_corners_rows[y][x] = index_bl[0] |
156 self.matrix_bl_corners_cols[y][x] = index_bl[1] | 262 p.matrix_bl_corners_cols[y][x] = index_bl[1] |
157 self.matrix_bl_multiply[y,x] = x_ratio*(1.0-y_ratio) | 263 p.matrix_bl_multiply[y,x] = x_ratio*(1.0-y_ratio) |
158 | 264 |
159 # if bottom right outside bounds | 265 # if bottom right outside bounds |
160 if index_br[0] < 0 or index_br[0] >= h or index_br[1] < 0 or index_br[1] >= w: | 266 if index_br[0] < 0 or index_br[0] >= h or index_br[1] < 0 or index_br[1] >= w: |
161 self.matrix_br_corners_rows[y][x] = 0 | 267 p.matrix_br_corners_rows[y][x] = 0 |
162 self.matrix_br_corners_cols[y][x] = 0 | 268 p.matrix_br_corners_cols[y][x] = 0 |
163 self.matrix_br_multiply[y,x] = 0 | 269 p.matrix_br_multiply[y,x] = 0 |
164 else: | 270 else: |
165 self.matrix_br_corners_rows[y][x] = index_br[0] | 271 p.matrix_br_corners_rows[y][x] = index_br[0] |
166 self.matrix_br_corners_cols[y][x] = index_br[1] | 272 p.matrix_br_corners_cols[y][x] = index_br[1] |
167 self.matrix_br_multiply[y,x] = (1.0-x_ratio)*(1.0-y_ratio) | 273 p.matrix_br_multiply[y,x] = (1.0-x_ratio)*(1.0-y_ratio) |
168 | 274 |
169 def distort_image(self, image): | 275 # not really necessary, but anyway |
276 return p | |
277 | |
278 def transform_image(self, image): | |
279 p = self.current_params | |
280 | |
170 # index pixels to get the 4 corners for bilinear combination | 281 # index pixels to get the 4 corners for bilinear combination |
171 tl_pixels = image[self.matrix_tl_corners_rows, self.matrix_tl_corners_cols] | 282 tl_pixels = image[p.matrix_tl_corners_rows, p.matrix_tl_corners_cols] |
172 tr_pixels = image[self.matrix_tr_corners_rows, self.matrix_tr_corners_cols] | 283 tr_pixels = image[p.matrix_tr_corners_rows, p.matrix_tr_corners_cols] |
173 bl_pixels = image[self.matrix_bl_corners_rows, self.matrix_bl_corners_cols] | 284 bl_pixels = image[p.matrix_bl_corners_rows, p.matrix_bl_corners_cols] |
174 br_pixels = image[self.matrix_br_corners_rows, self.matrix_br_corners_cols] | 285 br_pixels = image[p.matrix_br_corners_rows, p.matrix_br_corners_cols] |
175 | 286 |
176 # bilinear ratios, elemwise multiply | 287 # bilinear ratios, elemwise multiply |
177 tl_pixels = numpy.multiply(tl_pixels, self.matrix_tl_multiply) | 288 tl_pixels = numpy.multiply(tl_pixels, p.matrix_tl_multiply) |
178 tr_pixels = numpy.multiply(tr_pixels, self.matrix_tr_multiply) | 289 tr_pixels = numpy.multiply(tr_pixels, p.matrix_tr_multiply) |
179 bl_pixels = numpy.multiply(bl_pixels, self.matrix_bl_multiply) | 290 bl_pixels = numpy.multiply(bl_pixels, p.matrix_bl_multiply) |
180 br_pixels = numpy.multiply(br_pixels, self.matrix_br_multiply) | 291 br_pixels = numpy.multiply(br_pixels, p.matrix_br_multiply) |
181 | 292 |
182 # sum to finish bilinear combination | 293 # sum to finish bilinear combination |
183 return numpy.sum([tl_pixels,tr_pixels,bl_pixels,br_pixels], axis=0) | 294 return numpy.sum([tl_pixels,tr_pixels,bl_pixels,br_pixels], axis=0) |
184 | 295 |
185 # TESTS ---------------------------------------------------------------------- | 296 # TESTS ---------------------------------------------------------------------- |
191 if len(img.shape) > 2: | 302 if len(img.shape) > 2: |
192 img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) | 303 img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) |
193 return (img / 255.0).astype('float') | 304 return (img / 255.0).astype('float') |
194 | 305 |
195 def _specific_test(): | 306 def _specific_test(): |
196 img = _load_image("tests/d.png") | 307 imgpath = os.path.join(_TEST_DIR, "d.png") |
197 dist = LocalElasticDistorter((32,32), (15,15), 9.0, 5.0) | 308 img = _load_image(imgpath) |
198 dist.distort_image(img) | 309 dist = LocalElasticDistorter((32,32)) |
199 | 310 print dist.regenerate_parameters(0.5) |
311 img = dist.distort_image(img) | |
312 pylab.imshow(img) | |
313 pylab.show() | |
314 | |
315 def _complexity_tests(): | |
316 imgpath = os.path.join(_TEST_DIR, "d.png") | |
317 dist = LocalElasticDistorter((32,32)) | |
318 orig_img = _load_image(imgpath) | |
319 html_content = '''<html><body>Original:<br/><img src='d.png'>''' | |
320 for complexity in numpy.arange(0.0, 1.1, 0.1): | |
321 html_content += '<br/>Complexity: ' + str(complexity) + '<br/>' | |
322 for i in range(10): | |
323 t1 = time.time() | |
324 dist.regenerate_parameters(complexity) | |
325 t2 = time.time() | |
326 print "diff", t2-t1 | |
327 img = dist.transform_image(orig_img) | |
328 filename = "complexity_" + str(complexity) + "_" + str(i) + ".png" | |
329 new_path = os.path.join(_TEST_DIR, filename) | |
330 _save_image(img, new_path) | |
331 html_content += '<img src="' + filename + '">' | |
332 html_content += "</body></html>" | |
333 html_file = open(os.path.join(_TEST_DIR, "complexity.html"), "w") | |
334 html_file.write(html_content) | |
335 html_file.close() | |
336 | |
337 def _complexity_benchmark(): | |
338 imgpath = os.path.join(_TEST_DIR, "d.png") | |
339 dist = LocalElasticDistorter((32,32)) | |
340 orig_img = _load_image(imgpath) | |
341 | |
342 # time the first 10 | |
343 t1 = time.time() | |
344 for i in range(10): | |
345 dist.regenerate_parameters(0.2) | |
346 img = dist.transform_image(orig_img) | |
347 t2 = time.time() | |
348 | |
349 print "first 10, total = ", t2-t1, ", avg=", (t2-t1)/10 | |
350 | |
351 # time the next 40 | |
352 t1 = time.time() | |
353 for i in range(40): | |
354 dist.regenerate_parameters(0.2) | |
355 img = dist.transform_image(orig_img) | |
356 t2 = time.time() | |
357 | |
358 print "next 40, total = ", t2-t1, ", avg=", (t2-t1)/40 | |
359 | |
360 # time the next 50 | |
361 t1 = time.time() | |
362 for i in range(50): | |
363 dist.regenerate_parameters(0.2) | |
364 img = dist.transform_image(orig_img) | |
365 t2 = time.time() | |
366 | |
367 print "next 50, total = ", t2-t1, ", avg=", (t2-t1)/50 | |
368 | |
369 # time the next 1000 | |
370 t1 = time.time() | |
371 for i in range(1000): | |
372 dist.regenerate_parameters(0.2) | |
373 img = dist.transform_image(orig_img) | |
374 t2 = time.time() | |
375 | |
376 print "next 1000, total = ", t2-t1, ", avg=", (t2-t1)/1000 | |
377 | |
378 | |
379 | |
380 def _save_image(img, path): | |
381 img2 = Image.fromarray((img * 255).astype('uint8'), "L") | |
382 img2.save(path) | |
383 | |
384 # TODO: reformat to follow new class... it function of complexity now | |
385 ''' | |
200 def _distorter_tests(): | 386 def _distorter_tests(): |
201 #import pylab | 387 #import pylab |
202 #pylab.imshow(img) | 388 #pylab.imshow(img) |
203 #pylab.show() | 389 #pylab.show() |
204 | 390 |
205 for letter in ("d", "a", "n", "o"): | 391 for letter in ("d", "a", "n", "o"): |
206 img = _load_image("tests/" + letter + ".png") | 392 img = _load_image("tests/" + letter + ".png") |
207 for alpha in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0): | 393 for alpha in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0): |
208 for sigma in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0): | 394 for sigma in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0): |
209 id = LocalElasticDistorter((32,32), (15,15), sigma, alpha) | 395 id = LocalElasticDistorter((32,32)) |
210 img2 = id.distort_image(img) | 396 img2 = id.distort_image(img) |
211 img2 = Image.fromarray((img2 * 255).astype('uint8'), "L") | 397 img2 = Image.fromarray((img2 * 255).astype('uint8'), "L") |
212 img2.save("tests/"+letter+"_alpha"+str(alpha)+"_sigma"+str(sigma)+".png") | 398 img2.save("tests/"+letter+"_alpha"+str(alpha)+"_sigma"+str(sigma)+".png") |
399 ''' | |
213 | 400 |
214 def _benchmark(): | 401 def _benchmark(): |
215 img = _load_image("tests/d.png") | 402 img = _load_image("tests/d.png") |
216 dist = LocalElasticDistorter((32,32), (10,10), 5.0, 5.0) | 403 dist = LocalElasticDistorter((32,32)) |
404 dist.regenerate_parameters(0.0) | |
217 import time | 405 import time |
218 t1 = time.time() | 406 t1 = time.time() |
219 for i in range(10000): | 407 for i in range(10000): |
220 if i % 1000 == 0: | 408 if i % 1000 == 0: |
221 print "-" | 409 print "-" |
223 t2 = time.time() | 411 t2 = time.time() |
224 print "t2-t1", t2-t1 | 412 print "t2-t1", t2-t1 |
225 print "avg", 10000/(t2-t1) | 413 print "avg", 10000/(t2-t1) |
226 | 414 |
227 if __name__ == '__main__': | 415 if __name__ == '__main__': |
416 import time | |
417 import pylab | |
228 import Image | 418 import Image |
229 _distorter_tests() | 419 import os.path |
420 #_distorter_tests() | |
230 #_benchmark() | 421 #_benchmark() |
231 #_specific_test() | 422 #_specific_test() |
232 | 423 #_complexity_tests() |
233 | 424 _complexity_benchmark() |
425 | |
426 |