Mercurial > ift6266
comparison deep/stacked_dae/old/nist_sda.py @ 265:c8fe09a65039
Déplacer le nouveau code de stacked_dae de v2 vers le répertoire de base 'stacked_dae', et bougé le vieux code vers le répertoire 'old'
author | fsavard |
---|---|
date | Fri, 19 Mar 2010 10:54:39 -0400 |
parents | deep/stacked_dae/nist_sda.py@acb942530923 |
children |
comparison
equal
deleted
inserted
replaced
243:3c54cb3713ef | 265:c8fe09a65039 |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 import ift6266 | |
5 import pylearn | |
6 | |
7 import numpy | |
8 import theano | |
9 import time | |
10 | |
11 import pylearn.version | |
12 import theano.tensor as T | |
13 from theano.tensor.shared_randomstreams import RandomStreams | |
14 | |
15 import copy | |
16 import sys | |
17 import os | |
18 import os.path | |
19 | |
20 from jobman import DD | |
21 import jobman, jobman.sql | |
22 from pylearn.io import filetensor | |
23 | |
24 from utils import produit_cartesien_jobs | |
25 | |
26 from sgd_optimization import SdaSgdOptimizer | |
27 | |
28 from ift6266.utils.scalar_series import * | |
29 | |
30 ############################################################################## | |
31 # GLOBALS | |
32 | |
33 TEST_CONFIG = False | |
34 | |
35 NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' | |
36 JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_db/fsavard_sda4' | |
37 EXPERIMENT_PATH = "ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint" | |
38 | |
39 REDUCE_TRAIN_TO = None | |
40 MAX_FINETUNING_EPOCHS = 1000 | |
41 # number of minibatches before taking means for valid error etc. | |
42 REDUCE_EVERY = 1000 | |
43 | |
44 if TEST_CONFIG: | |
45 REDUCE_TRAIN_TO = 1000 | |
46 MAX_FINETUNING_EPOCHS = 2 | |
47 REDUCE_EVERY = 10 | |
48 | |
49 # Possible values the hyperparameters can take. These are then | |
50 # combined with produit_cartesien_jobs so we get a list of all | |
51 # possible combinations, each one resulting in a job inserted | |
52 # in the jobman DB. | |
53 JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001], | |
54 'pretraining_epochs_per_layer': [10,20], | |
55 'hidden_layers_sizes': [300,800], | |
56 'corruption_levels': [0.1,0.2,0.3], | |
57 'minibatch_size': [20], | |
58 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], | |
59 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out | |
60 'num_hidden_layers':[2,3]} | |
61 | |
62 # Just useful for tests... minimal number of epochs | |
63 DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, | |
64 'pretraining_lr':0.1, | |
65 'pretraining_epochs_per_layer':20, | |
66 'max_finetuning_epochs':2, | |
67 'hidden_layers_sizes':800, | |
68 'corruption_levels':0.2, | |
69 'minibatch_size':20, | |
70 #'reduce_train_to':300, | |
71 'num_hidden_layers':2}) | |
72 | |
73 ''' | |
74 Function called by jobman upon launching each job | |
75 Its path is the one given when inserting jobs: | |
76 ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint | |
77 ''' | |
78 def jobman_entrypoint(state, channel): | |
79 # record mercurial versions of each package | |
80 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) | |
81 channel.save() | |
82 | |
83 workingdir = os.getcwd() | |
84 | |
85 print "Will load NIST" | |
86 | |
87 nist = NIST(minibatch_size=20) | |
88 | |
89 print "NIST loaded" | |
90 | |
91 # For test runs, we don't want to use the whole dataset so | |
92 # reduce it to fewer elements if asked to. | |
93 rtt = None | |
94 if state.has_key('reduce_train_to'): | |
95 rtt = state['reduce_train_to'] | |
96 elif REDUCE_TRAIN_TO: | |
97 rtt = REDUCE_TRAIN_TO | |
98 | |
99 if rtt: | |
100 print "Reducing training set to "+str(rtt)+ " examples" | |
101 nist.reduce_train_set(rtt) | |
102 | |
103 train,valid,test = nist.get_tvt() | |
104 dataset = (train,valid,test) | |
105 | |
106 n_ins = 32*32 | |
107 n_outs = 62 # 10 digits, 26*2 (lower, capitals) | |
108 | |
109 # b,b',W for each hidden layer | |
110 # + b,W of last layer (logreg) | |
111 numparams = state.num_hidden_layers * 3 + 2 | |
112 series_mux = None | |
113 series_mux = create_series(workingdir, numparams) | |
114 | |
115 print "Creating optimizer with state, ", state | |
116 | |
117 optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \ | |
118 n_ins=n_ins, n_outs=n_outs,\ | |
119 input_divider=255.0, series_mux=series_mux) | |
120 | |
121 optimizer.pretrain() | |
122 channel.save() | |
123 | |
124 optimizer.finetune() | |
125 channel.save() | |
126 | |
127 return channel.COMPLETE | |
128 | |
129 # These Series objects are used to save various statistics | |
130 # during the training. | |
131 def create_series(basedir, numparams): | |
132 mux = SeriesMultiplexer() | |
133 | |
134 # comment out series we don't want to save | |
135 mux.add_series(AccumulatorSeries(name="reconstruction_error", | |
136 reduce_every=REDUCE_EVERY, # every 1000 batches, we take the mean and save | |
137 mean=True, | |
138 directory=basedir, flush_every=1)) | |
139 | |
140 mux.add_series(AccumulatorSeries(name="training_error", | |
141 reduce_every=REDUCE_EVERY, # every 1000 batches, we take the mean and save | |
142 mean=True, | |
143 directory=basedir, flush_every=1)) | |
144 | |
145 mux.add_series(BaseSeries(name="validation_error", directory=basedir, flush_every=1)) | |
146 mux.add_series(BaseSeries(name="test_error", directory=basedir, flush_every=1)) | |
147 | |
148 mux.add_series(ParamsArrayStats(numparams,name="params",directory=basedir)) | |
149 | |
150 return mux | |
151 | |
152 # Perform insertion into the Postgre DB based on combination | |
153 # of hyperparameter values above | |
154 # (see comment for produit_cartesien_jobs() to know how it works) | |
155 def jobman_insert_nist(): | |
156 jobs = produit_cartesien_jobs(JOB_VALS) | |
157 | |
158 db = jobman.sql.db(JOBDB) | |
159 for job in jobs: | |
160 job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) | |
161 jobman.sql.insert_dict(job, db) | |
162 | |
163 print "inserted" | |
164 | |
165 class NIST: | |
166 def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): | |
167 global NIST_ALL_LOCATION | |
168 | |
169 self.minibatch_size = minibatch_size | |
170 self.basepath = basepath and basepath or NIST_ALL_LOCATION | |
171 | |
172 self.set_filenames() | |
173 | |
174 # arrays of 2 elements: .x, .y | |
175 self.train = [None, None] | |
176 self.test = [None, None] | |
177 | |
178 self.load_train_test() | |
179 | |
180 self.valid = [[], []] | |
181 self.split_train_valid() | |
182 if reduce_train_to: | |
183 self.reduce_train_set(reduce_train_to) | |
184 | |
185 def get_tvt(self): | |
186 return self.train, self.valid, self.test | |
187 | |
188 def set_filenames(self): | |
189 self.train_files = ['all_train_data.ft', | |
190 'all_train_labels.ft'] | |
191 | |
192 self.test_files = ['all_test_data.ft', | |
193 'all_test_labels.ft'] | |
194 | |
195 def load_train_test(self): | |
196 self.load_data_labels(self.train_files, self.train) | |
197 self.load_data_labels(self.test_files, self.test) | |
198 | |
199 def load_data_labels(self, filenames, pair): | |
200 for i, fn in enumerate(filenames): | |
201 f = open(os.path.join(self.basepath, fn)) | |
202 pair[i] = filetensor.read(f) | |
203 f.close() | |
204 | |
205 def reduce_train_set(self, max): | |
206 self.train[0] = self.train[0][:max] | |
207 self.train[1] = self.train[1][:max] | |
208 | |
209 if max < len(self.test[0]): | |
210 for ar in (self.test, self.valid): | |
211 ar[0] = ar[0][:max] | |
212 ar[1] = ar[1][:max] | |
213 | |
214 def split_train_valid(self): | |
215 test_len = len(self.test[0]) | |
216 | |
217 new_train_x = self.train[0][:-test_len] | |
218 new_train_y = self.train[1][:-test_len] | |
219 | |
220 self.valid[0] = self.train[0][-test_len:] | |
221 self.valid[1] = self.train[1][-test_len:] | |
222 | |
223 self.train[0] = new_train_x | |
224 self.train[1] = new_train_y | |
225 | |
226 def test_load_nist(): | |
227 print "Will load NIST" | |
228 | |
229 import time | |
230 t1 = time.time() | |
231 nist = NIST(20) | |
232 t2 = time.time() | |
233 | |
234 print "NIST loaded. time delta = ", t2-t1 | |
235 | |
236 tr,v,te = nist.get_tvt() | |
237 | |
238 print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) | |
239 | |
240 raw_input("Press any key") | |
241 | |
242 if __name__ == '__main__': | |
243 | |
244 import sys | |
245 | |
246 args = sys.argv[1:] | |
247 | |
248 if len(args) > 0 and args[0] == 'load_nist': | |
249 test_load_nist() | |
250 | |
251 elif len(args) > 0 and args[0] == 'jobman_insert': | |
252 jobman_insert_nist() | |
253 | |
254 elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': | |
255 chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) | |
256 jobman_entrypoint(DEFAULT_HP_NIST, chanmock) | |
257 | |
258 else: | |
259 print "Bad arguments" | |
260 |