comparison deep/stacked_dae/nist_sda.py @ 265:c8fe09a65039

Déplacer le nouveau code de stacked_dae de v2 vers le répertoire de base 'stacked_dae', et bougé le vieux code vers le répertoire 'old'
author fsavard
date Fri, 19 Mar 2010 10:54:39 -0400
parents deep/stacked_dae/v2/nist_sda.py@42005ec87747
children 798d1344e6a2
comparison
equal deleted inserted replaced
243:3c54cb3713ef 265:c8fe09a65039
23 23
24 from utils import produit_cartesien_jobs 24 from utils import produit_cartesien_jobs
25 25
26 from sgd_optimization import SdaSgdOptimizer 26 from sgd_optimization import SdaSgdOptimizer
27 27
28 from ift6266.utils.scalar_series import * 28 #from ift6266.utils.scalar_series import *
29 from ift6266.utils.seriestables import *
30 import tables
29 31
30 ############################################################################## 32 from ift6266 import datasets
31 # GLOBALS 33 from config import *
32
33 TEST_CONFIG = False
34
35 NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all'
36 JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_db/fsavard_sda4'
37 EXPERIMENT_PATH = "ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint"
38
39 REDUCE_TRAIN_TO = None
40 MAX_FINETUNING_EPOCHS = 1000
41 # number of minibatches before taking means for valid error etc.
42 REDUCE_EVERY = 1000
43
44 if TEST_CONFIG:
45 REDUCE_TRAIN_TO = 1000
46 MAX_FINETUNING_EPOCHS = 2
47 REDUCE_EVERY = 10
48
49 # Possible values the hyperparameters can take. These are then
50 # combined with produit_cartesien_jobs so we get a list of all
51 # possible combinations, each one resulting in a job inserted
52 # in the jobman DB.
53 JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001],
54 'pretraining_epochs_per_layer': [10,20],
55 'hidden_layers_sizes': [300,800],
56 'corruption_levels': [0.1,0.2,0.3],
57 'minibatch_size': [20],
58 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS],
59 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out
60 'num_hidden_layers':[2,3]}
61
62 # Just useful for tests... minimal number of epochs
63 DEFAULT_HP_NIST = DD({'finetuning_lr':0.1,
64 'pretraining_lr':0.1,
65 'pretraining_epochs_per_layer':20,
66 'max_finetuning_epochs':2,
67 'hidden_layers_sizes':800,
68 'corruption_levels':0.2,
69 'minibatch_size':20,
70 #'reduce_train_to':300,
71 'num_hidden_layers':2})
72 34
73 ''' 35 '''
74 Function called by jobman upon launching each job 36 Function called by jobman upon launching each job
75 Its path is the one given when inserting jobs: 37 Its path is the one given when inserting jobs: see EXPERIMENT_PATH
76 ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint
77 ''' 38 '''
78 def jobman_entrypoint(state, channel): 39 def jobman_entrypoint(state, channel):
79 # record mercurial versions of each package 40 # record mercurial versions of each package
80 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) 41 pylearn.version.record_versions(state,[theano,ift6266,pylearn])
42 # TODO: remove this, bad for number of simultaneous requests on DB
81 channel.save() 43 channel.save()
82
83 workingdir = os.getcwd()
84
85 print "Will load NIST"
86
87 nist = NIST(minibatch_size=20)
88
89 print "NIST loaded"
90 44
91 # For test runs, we don't want to use the whole dataset so 45 # For test runs, we don't want to use the whole dataset so
92 # reduce it to fewer elements if asked to. 46 # reduce it to fewer elements if asked to.
93 rtt = None 47 rtt = None
94 if state.has_key('reduce_train_to'): 48 if state.has_key('reduce_train_to'):
95 rtt = state['reduce_train_to'] 49 rtt = state['reduce_train_to']
96 elif REDUCE_TRAIN_TO: 50 elif REDUCE_TRAIN_TO:
97 rtt = REDUCE_TRAIN_TO 51 rtt = REDUCE_TRAIN_TO
98 52
99 if rtt:
100 print "Reducing training set to "+str(rtt)+ " examples"
101 nist.reduce_train_set(rtt)
102
103 train,valid,test = nist.get_tvt()
104 dataset = (train,valid,test)
105
106 n_ins = 32*32 53 n_ins = 32*32
107 n_outs = 62 # 10 digits, 26*2 (lower, capitals) 54 n_outs = 62 # 10 digits, 26*2 (lower, capitals)
55
56 examples_per_epoch = NIST_ALL_TRAIN_SIZE
108 57
109 # b,b',W for each hidden layer 58 series = create_series(state.num_hidden_layers)
110 # + b,W of last layer (logreg)
111 numparams = state.num_hidden_layers * 3 + 2
112 series_mux = None
113 series_mux = create_series(workingdir, numparams)
114 59
115 print "Creating optimizer with state, ", state 60 print "Creating optimizer with state, ", state
116 61
117 optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \ 62 optimizer = SdaSgdOptimizer(dataset=datasets.nist_all,
63 hyperparameters=state, \
118 n_ins=n_ins, n_outs=n_outs,\ 64 n_ins=n_ins, n_outs=n_outs,\
119 input_divider=255.0, series_mux=series_mux) 65 examples_per_epoch=examples_per_epoch, \
66 series=series,
67 max_minibatches=rtt)
120 68
121 optimizer.pretrain() 69 optimizer.pretrain(datasets.nist_all)
122 channel.save() 70 channel.save()
123 71
124 optimizer.finetune() 72 optimizer.finetune(datasets.nist_all)
125 channel.save() 73 channel.save()
126 74
127 return channel.COMPLETE 75 return channel.COMPLETE
128 76
129 # These Series objects are used to save various statistics 77 # These Series objects are used to save various statistics
130 # during the training. 78 # during the training.
131 def create_series(basedir, numparams): 79 def create_series(num_hidden_layers):
132 mux = SeriesMultiplexer() 80
81 # Replace series we don't want to save with DummySeries, e.g.
82 # series['training_error'] = DummySeries()
83
84 series = {}
85
86 basedir = os.getcwd()
87
88 h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w")
89
90 # reconstruction
91 reconstruction_base = \
92 ErrorSeries(error_name="reconstruction_error",
93 table_name="reconstruction_error",
94 hdf5_file=h5f,
95 index_names=('epoch','minibatch'),
96 title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)")
97 series['reconstruction_error'] = \
98 AccumulatorSeriesWrapper(base_series=reconstruction_base,
99 reduce_every=REDUCE_EVERY)
100
101 # train
102 training_base = \
103 ErrorSeries(error_name="training_error",
104 table_name="training_error",
105 hdf5_file=h5f,
106 index_names=('epoch','minibatch'),
107 title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)")
108 series['training_error'] = \
109 AccumulatorSeriesWrapper(base_series=training_base,
110 reduce_every=REDUCE_EVERY)
111
112 # valid and test are not accumulated/mean, saved directly
113 series['validation_error'] = \
114 ErrorSeries(error_name="validation_error",
115 table_name="validation_error",
116 hdf5_file=h5f,
117 index_names=('epoch','minibatch'))
118
119 series['test_error'] = \
120 ErrorSeries(error_name="test_error",
121 table_name="test_error",
122 hdf5_file=h5f,
123 index_names=('epoch','minibatch'))
124
125 param_names = []
126 for i in range(num_hidden_layers):
127 param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i]
128 param_names += ['logreg_layer_W', 'logreg_layer_b']
133 129
134 # comment out series we don't want to save 130 # comment out series we don't want to save
135 mux.add_series(AccumulatorSeries(name="reconstruction_error", 131 series['params'] = SharedParamsStatisticsWrapper(
136 reduce_every=REDUCE_EVERY, # every 1000 batches, we take the mean and save 132 new_group_name="params",
137 mean=True, 133 base_group="/",
138 directory=basedir, flush_every=1)) 134 arrays_names=param_names,
135 hdf5_file=h5f,
136 index_names=('epoch',))
139 137
140 mux.add_series(AccumulatorSeries(name="training_error", 138 return series
141 reduce_every=REDUCE_EVERY, # every 1000 batches, we take the mean and save
142 mean=True,
143 directory=basedir, flush_every=1))
144
145 mux.add_series(BaseSeries(name="validation_error", directory=basedir, flush_every=1))
146 mux.add_series(BaseSeries(name="test_error", directory=basedir, flush_every=1))
147
148 mux.add_series(ParamsArrayStats(numparams,name="params",directory=basedir))
149
150 return mux
151 139
152 # Perform insertion into the Postgre DB based on combination 140 # Perform insertion into the Postgre DB based on combination
153 # of hyperparameter values above 141 # of hyperparameter values above
154 # (see comment for produit_cartesien_jobs() to know how it works) 142 # (see comment for produit_cartesien_jobs() to know how it works)
155 def jobman_insert_nist(): 143 def jobman_insert_nist():
160 job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) 148 job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH})
161 jobman.sql.insert_dict(job, db) 149 jobman.sql.insert_dict(job, db)
162 150
163 print "inserted" 151 print "inserted"
164 152
165 class NIST:
166 def __init__(self, minibatch_size, basepath=None, reduce_train_to=None):
167 global NIST_ALL_LOCATION
168
169 self.minibatch_size = minibatch_size
170 self.basepath = basepath and basepath or NIST_ALL_LOCATION
171
172 self.set_filenames()
173
174 # arrays of 2 elements: .x, .y
175 self.train = [None, None]
176 self.test = [None, None]
177
178 self.load_train_test()
179
180 self.valid = [[], []]
181 self.split_train_valid()
182 if reduce_train_to:
183 self.reduce_train_set(reduce_train_to)
184
185 def get_tvt(self):
186 return self.train, self.valid, self.test
187
188 def set_filenames(self):
189 self.train_files = ['all_train_data.ft',
190 'all_train_labels.ft']
191
192 self.test_files = ['all_test_data.ft',
193 'all_test_labels.ft']
194
195 def load_train_test(self):
196 self.load_data_labels(self.train_files, self.train)
197 self.load_data_labels(self.test_files, self.test)
198
199 def load_data_labels(self, filenames, pair):
200 for i, fn in enumerate(filenames):
201 f = open(os.path.join(self.basepath, fn))
202 pair[i] = filetensor.read(f)
203 f.close()
204
205 def reduce_train_set(self, max):
206 self.train[0] = self.train[0][:max]
207 self.train[1] = self.train[1][:max]
208
209 if max < len(self.test[0]):
210 for ar in (self.test, self.valid):
211 ar[0] = ar[0][:max]
212 ar[1] = ar[1][:max]
213
214 def split_train_valid(self):
215 test_len = len(self.test[0])
216
217 new_train_x = self.train[0][:-test_len]
218 new_train_y = self.train[1][:-test_len]
219
220 self.valid[0] = self.train[0][-test_len:]
221 self.valid[1] = self.train[1][-test_len:]
222
223 self.train[0] = new_train_x
224 self.train[1] = new_train_y
225
226 def test_load_nist():
227 print "Will load NIST"
228
229 import time
230 t1 = time.time()
231 nist = NIST(20)
232 t2 = time.time()
233
234 print "NIST loaded. time delta = ", t2-t1
235
236 tr,v,te = nist.get_tvt()
237
238 print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0])
239
240 raw_input("Press any key")
241
242 if __name__ == '__main__': 153 if __name__ == '__main__':
243
244 import sys
245 154
246 args = sys.argv[1:] 155 args = sys.argv[1:]
247 156
248 if len(args) > 0 and args[0] == 'load_nist': 157 #if len(args) > 0 and args[0] == 'load_nist':
249 test_load_nist() 158 # test_load_nist()
250 159
251 elif len(args) > 0 and args[0] == 'jobman_insert': 160 if len(args) > 0 and args[0] == 'jobman_insert':
252 jobman_insert_nist() 161 jobman_insert_nist()
253 162
254 elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': 163 elif len(args) > 0 and args[0] == 'test_jobman_entrypoint':
255 chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) 164 chanmock = DD({'COMPLETE':0,'save':(lambda:None)})
256 jobman_entrypoint(DEFAULT_HP_NIST, chanmock) 165 jobman_entrypoint(DEFAULT_HP_NIST, chanmock)