Mercurial > ift6266
comparison deep/convolutional_dae/salah_exp/sgd_optimization_new.py @ 364:c05680f8c92f
Fixing a wrong commit and committing more files.
author | humel |
---|---|
date | Thu, 22 Apr 2010 19:50:21 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
358:31641a84e0ae | 364:c05680f8c92f |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 import numpy | |
5 import theano | |
6 import time | |
7 import datetime | |
8 import theano.tensor as T | |
9 import sys | |
10 import pickle | |
11 | |
12 from jobman import DD | |
13 import jobman, jobman.sql | |
14 from copy import copy | |
15 | |
16 from stacked_convolutional_dae_uit import CSdA | |
17 | |
18 from ift6266.utils.seriestables import * | |
19 | |
20 buffersize=1000 | |
21 | |
22 default_series = { \ | |
23 'reconstruction_error' : DummySeries(), | |
24 'training_error' : DummySeries(), | |
25 'validation_error' : DummySeries(), | |
26 'test_error' : DummySeries(), | |
27 'params' : DummySeries() | |
28 } | |
29 | |
30 def itermax(iter, max): | |
31 for i,it in enumerate(iter): | |
32 if i >= max: | |
33 break | |
34 yield it | |
35 def get_conv_shape(kernels,imgshp,batch_size,max_pool_layers): | |
36 # Returns the dimension at the output of the convoluational net | |
37 # and a list of Image and kernel shape for every | |
38 # Convolutional layer | |
39 conv_layers=[] | |
40 init_layer = [ [ kernels[0][0],1,kernels[0][1],kernels[0][2] ],\ | |
41 [ batch_size , 1, imgshp[0], imgshp[1] ], | |
42 max_pool_layers[0] ] | |
43 conv_layers.append(init_layer) | |
44 | |
45 conv_n_out = int((32-kernels[0][2]+1)/max_pool_layers[0][0]) | |
46 | |
47 for i in range(1,len(kernels)): | |
48 layer = [ [ kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2] ],\ | |
49 [ batch_size, kernels[i-1][0],conv_n_out,conv_n_out ], | |
50 max_pool_layers[i] ] | |
51 conv_layers.append(layer) | |
52 conv_n_out = int( (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0]) | |
53 conv_n_out=kernels[-1][0]*conv_n_out**2 | |
54 return conv_n_out,conv_layers | |
55 | |
56 | |
57 | |
58 | |
59 | |
60 class CSdASgdOptimizer: | |
61 def __init__(self, dataset, hyperparameters, n_ins, n_outs, | |
62 examples_per_epoch, series=default_series, max_minibatches=None): | |
63 self.dataset = dataset | |
64 self.hp = hyperparameters | |
65 self.n_ins = n_ins | |
66 self.n_outs = n_outs | |
67 self.parameters_pre=[] | |
68 | |
69 self.max_minibatches = max_minibatches | |
70 print "CSdASgdOptimizer, max_minibatches =", max_minibatches | |
71 | |
72 self.ex_per_epoch = examples_per_epoch | |
73 self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size | |
74 | |
75 self.series = series | |
76 | |
77 self.rng = numpy.random.RandomState(1234) | |
78 self.init_classifier() | |
79 | |
80 sys.stdout.flush() | |
81 | |
82 def init_classifier(self): | |
83 print "Constructing classifier" | |
84 | |
85 n_ins,convlayers = get_conv_shape(self.hp.kernels,self.hp.imgshp,self.hp.minibatch_size,self.hp.max_pool_layers) | |
86 | |
87 self.classifier = CSdA(n_ins_mlp = n_ins, | |
88 batch_size = self.hp.minibatch_size, | |
89 conv_hidden_layers_sizes = convlayers, | |
90 mlp_hidden_layers_sizes = self.hp.mlp_size, | |
91 corruption_levels = self.hp.corruption_levels, | |
92 rng = self.rng, | |
93 n_out = self.n_outs, | |
94 pretrain_lr = self.hp.pretraining_lr, | |
95 finetune_lr = self.hp.finetuning_lr) | |
96 | |
97 | |
98 | |
99 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") | |
100 | |
101 sys.stdout.flush() | |
102 | |
103 def train(self): | |
104 self.pretrain(self.dataset) | |
105 self.finetune(self.dataset) | |
106 | |
107 def pretrain(self,dataset): | |
108 print "STARTING PRETRAINING, time = ", datetime.datetime.now() | |
109 sys.stdout.flush() | |
110 | |
111 un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file | |
112 | |
113 start_time = time.clock() | |
114 ## Pre-train layer-wise | |
115 for i in xrange(self.classifier.n_layers): | |
116 # go through pretraining epochs | |
117 for epoch in xrange(self.hp.pretraining_epochs_per_layer): | |
118 # go through the training set | |
119 batch_index=0 | |
120 count=0 | |
121 num_files=0 | |
122 for x,y in dataset.train(self.hp.minibatch_size): | |
123 if x.shape[0] != self.hp.minibatch_size: | |
124 continue | |
125 c = self.classifier.pretrain_functions[i](x) | |
126 count +=1 | |
127 | |
128 self.series["reconstruction_error"].append((epoch, batch_index), c) | |
129 batch_index+=1 | |
130 | |
131 #if batch_index % 100 == 0: | |
132 # print "100 batches" | |
133 | |
134 # useful when doing tests | |
135 if self.max_minibatches and batch_index >= self.max_minibatches: | |
136 break | |
137 | |
138 #When we pass through the data only once (the case with P07) | |
139 #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M) | |
140 if self.hp.pretraining_epochs_per_layer == 1 and count%un_fichier == 0: | |
141 print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c | |
142 num_files+=1 | |
143 sys.stdout.flush() | |
144 self.series['params'].append((num_files,), self.classifier.all_params) | |
145 | |
146 #When NIST is used | |
147 if self.hp.pretraining_epochs_per_layer > 1: | |
148 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c | |
149 sys.stdout.flush() | |
150 | |
151 self.series['params'].append((epoch,), self.classifier.all_params) | |
152 end_time = time.clock() | |
153 | |
154 print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) | |
155 self.hp.update({'pretraining_time': end_time-start_time}) | |
156 | |
157 sys.stdout.flush() | |
158 | |
159 #To be able to load them later for tests on finetune | |
160 self.parameters_pre=[copy(x.value) for x in self.classifier.params] | |
161 f = open('params_pretrain.txt', 'w') | |
162 pickle.dump(self.parameters_pre,f) | |
163 f.close() | |
164 def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0): | |
165 | |
166 if special != 0 and special != 1: | |
167 sys.exit('Bad value for variable special. Must be in {0,1}') | |
168 print "STARTING FINETUNING, time = ", datetime.datetime.now() | |
169 | |
170 minibatch_size = self.hp.minibatch_size | |
171 if ind_test == 0 or ind_test == 20: | |
172 nom_test = "NIST" | |
173 nom_train="P07" | |
174 else: | |
175 nom_test = "P07" | |
176 nom_train = "NIST" | |
177 | |
178 | |
179 # create a function to compute the mistakes that are made by the model | |
180 # on the validation set, or testing set | |
181 test_model = \ | |
182 theano.function( | |
183 [self.classifier.x,self.classifier.y], self.classifier.errors) | |
184 # givens = { | |
185 # self.classifier.x: ensemble_x, | |
186 # self.classifier.y: ensemble_y]}) | |
187 | |
188 validate_model = \ | |
189 theano.function( | |
190 [self.classifier.x,self.classifier.y], self.classifier.errors) | |
191 # givens = { | |
192 # self.classifier.x: , | |
193 # self.classifier.y: ]}) | |
194 # early-stopping parameters | |
195 patience = 10000 # look as this many examples regardless | |
196 patience_increase = 2. # wait this much longer when a new best is | |
197 # found | |
198 improvement_threshold = 0.995 # a relative improvement of this much is | |
199 # considered significant | |
200 validation_frequency = min(self.mb_per_epoch, patience/2) | |
201 # go through this many | |
202 # minibatche before checking the network | |
203 # on the validation set; in this case we | |
204 # check every epoch | |
205 if self.max_minibatches and validation_frequency > self.max_minibatches: | |
206 validation_frequency = self.max_minibatches / 2 | |
207 best_params = None | |
208 best_validation_loss = float('inf') | |
209 test_score = 0. | |
210 start_time = time.clock() | |
211 | |
212 done_looping = False | |
213 epoch = 0 | |
214 | |
215 total_mb_index = 0 | |
216 minibatch_index = 0 | |
217 parameters_finetune=[] | |
218 learning_rate = self.hp.finetuning_lr | |
219 | |
220 | |
221 while (epoch < num_finetune) and (not done_looping): | |
222 epoch = epoch + 1 | |
223 | |
224 for x,y in dataset.train(minibatch_size,bufsize=buffersize): | |
225 | |
226 minibatch_index += 1 | |
227 | |
228 if x.shape[0] != self.hp.minibatch_size: | |
229 print 'bim' | |
230 continue | |
231 | |
232 cost_ij = self.classifier.finetune(x,y)#,learning_rate) | |
233 total_mb_index += 1 | |
234 | |
235 self.series["training_error"].append((epoch, minibatch_index), cost_ij) | |
236 | |
237 if (total_mb_index+1) % validation_frequency == 0: | |
238 #minibatch_index += 1 | |
239 #The validation set is always NIST (we want the model to be good on NIST) | |
240 | |
241 iter=dataset_test.valid(minibatch_size,bufsize=buffersize) | |
242 | |
243 | |
244 if self.max_minibatches: | |
245 iter = itermax(iter, self.max_minibatches) | |
246 | |
247 validation_losses = [] | |
248 | |
249 for x,y in iter: | |
250 if x.shape[0] != self.hp.minibatch_size: | |
251 print 'bim' | |
252 continue | |
253 validation_losses.append(validate_model(x,y)) | |
254 | |
255 this_validation_loss = numpy.mean(validation_losses) | |
256 | |
257 self.series["validation_error"].\ | |
258 append((epoch, minibatch_index), this_validation_loss*100.) | |
259 | |
260 print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \ | |
261 (epoch, minibatch_index+1, \ | |
262 this_validation_loss*100.)) | |
263 | |
264 | |
265 # if we got the best validation score until now | |
266 if this_validation_loss < best_validation_loss: | |
267 | |
268 #improve patience if loss improvement is good enough | |
269 if this_validation_loss < best_validation_loss * \ | |
270 improvement_threshold : | |
271 patience = max(patience, total_mb_index * patience_increase) | |
272 | |
273 # save best validation score, iteration number and parameters | |
274 best_validation_loss = this_validation_loss | |
275 best_iter = total_mb_index | |
276 parameters_finetune=[copy(x.value) for x in self.classifier.params] | |
277 | |
278 # test it on the test set | |
279 iter = dataset.test(minibatch_size,bufsize=buffersize) | |
280 if self.max_minibatches: | |
281 iter = itermax(iter, self.max_minibatches) | |
282 test_losses = [] | |
283 test_losses2 = [] | |
284 for x,y in iter: | |
285 if x.shape[0] != self.hp.minibatch_size: | |
286 print 'bim' | |
287 continue | |
288 test_losses.append(test_model(x,y)) | |
289 | |
290 test_score = numpy.mean(test_losses) | |
291 | |
292 #test it on the second test set | |
293 iter2 = dataset_test.test(minibatch_size,bufsize=buffersize) | |
294 if self.max_minibatches: | |
295 iter2 = itermax(iter2, self.max_minibatches) | |
296 for x,y in iter2: | |
297 if x.shape[0] != self.hp.minibatch_size: | |
298 continue | |
299 test_losses2.append(test_model(x,y)) | |
300 | |
301 test_score2 = numpy.mean(test_losses2) | |
302 | |
303 self.series["test_error"].\ | |
304 append((epoch, minibatch_index), test_score*100.) | |
305 | |
306 print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best ' | |
307 'model %f %%') % | |
308 (epoch, minibatch_index+1,nom_train, | |
309 test_score*100.)) | |
310 | |
311 print((' epoch %i, minibatch %i, test error on dataset %s of best ' | |
312 'model %f %%') % | |
313 (epoch, minibatch_index+1,nom_test, | |
314 test_score2*100.)) | |
315 | |
316 if patience <= total_mb_index: | |
317 done_looping = True | |
318 break #to exit the FOR loop | |
319 | |
320 sys.stdout.flush() | |
321 | |
322 # useful when doing tests | |
323 if self.max_minibatches and minibatch_index >= self.max_minibatches: | |
324 break | |
325 | |
326 if decrease == 1: | |
327 learning_rate /= 2 #divide the learning rate by 2 for each new epoch | |
328 | |
329 self.series['params'].append((epoch,), self.classifier.all_params) | |
330 | |
331 if done_looping == True: #To exit completly the fine-tuning | |
332 break #to exit the WHILE loop | |
333 | |
334 end_time = time.clock() | |
335 self.hp.update({'finetuning_time':end_time-start_time,\ | |
336 'best_validation_error':best_validation_loss,\ | |
337 'test_score':test_score, | |
338 'num_finetuning_epochs':epoch}) | |
339 | |
340 print(('\nOptimization complete with best validation score of %f %%,' | |
341 'with test performance %f %% on dataset %s ') % | |
342 (best_validation_loss * 100., test_score*100.,nom_train)) | |
343 print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) | |
344 | |
345 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) | |
346 | |
347 sys.stdout.flush() | |
348 | |
349 #Save a copy of the parameters in a file to be able to get them in the future | |
350 | |
351 if special == 1: #To keep a track of the value of the parameters | |
352 f = open('params_finetune_stanford.txt', 'w') | |
353 pickle.dump(parameters_finetune,f) | |
354 f.close() | |
355 | |
356 elif ind_test == 0 | ind_test == 20: #To keep a track of the value of the parameters | |
357 f = open('params_finetune_P07.txt', 'w') | |
358 pickle.dump(parameters_finetune,f) | |
359 f.close() | |
360 | |
361 | |
362 elif ind_test== 1: #For the run with 2 finetunes. It will be faster. | |
363 f = open('params_finetune_NIST.txt', 'w') | |
364 pickle.dump(parameters_finetune,f) | |
365 f.close() | |
366 | |
367 elif ind_test== 21: #To keep a track of the value of the parameters | |
368 f = open('params_finetune_P07_then_NIST.txt', 'w') | |
369 pickle.dump(parameters_finetune,f) | |
370 f.close() | |
371 #Set parameters like they where right after pre-train or finetune | |
372 def reload_parameters(self,which): | |
373 | |
374 #self.parameters_pre=pickle.load('params_pretrain.txt') | |
375 f = open(which) | |
376 self.parameters_pre=pickle.load(f) | |
377 f.close() | |
378 for idx,x in enumerate(self.parameters_pre): | |
379 if x.dtype=='float64': | |
380 self.classifier.params[idx].value=theano._asarray(copy(x),dtype=theano.config.floatX) | |
381 else: | |
382 self.classifier.params[idx].value=copy(x) | |
383 | |
384 def training_error(self,dataset): | |
385 # create a function to compute the mistakes that are made by the model | |
386 # on the validation set, or testing set | |
387 test_model = \ | |
388 theano.function( | |
389 [self.classifier.x,self.classifier.y], self.classifier.errors) | |
390 | |
391 iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize) | |
392 train_losses2 = [test_model(x,y) for x,y in iter2] | |
393 train_score2 = numpy.mean(train_losses2) | |
394 print "Training error is: " + str(train_score2) |