Mercurial > ift6266
comparison deep/stacked_dae/v2/sgd_optimization.py @ 227:acae439d6572
Ajouté une modification sur stacked_dae qui utilise les nouvelles SeriesTables. Je le met dans le repository pour que mes expériences en cours continuent sans perturbation, et pour que Sylvain puisse récupérer la version actuelle; je fusionnerai à moment donné.
author | fsavard |
---|---|
date | Fri, 12 Mar 2010 10:31:10 -0500 |
parents | |
children | 851e7ad4a143 |
comparison
equal
deleted
inserted
replaced
226:bfe20d63f88c | 227:acae439d6572 |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial | |
5 | |
6 import numpy | |
7 import theano | |
8 import time | |
9 import datetime | |
10 import theano.tensor as T | |
11 import sys | |
12 | |
13 from jobman import DD | |
14 import jobman, jobman.sql | |
15 | |
16 from stacked_dae import SdA | |
17 | |
18 from ift6266.utils.seriestables import * | |
19 | |
20 def shared_dataset(data_xy): | |
21 data_x, data_y = data_xy | |
22 if theano.config.device.startswith("gpu"): | |
23 print "TRANSFERING DATASETS (via shared()) TO GPU" | |
24 shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) | |
25 shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) | |
26 shared_y = T.cast(shared_y, 'int32') | |
27 else: | |
28 shared_x = theano.shared(data_x) | |
29 shared_y = theano.shared(data_y) | |
30 return shared_x, shared_y | |
31 | |
32 default_series = { \ | |
33 'reconstruction_error' : DummySeries(), | |
34 'training_error' : DummySeries(), | |
35 'validation_error' : DummySeries(), | |
36 'test_error' : DummySeries(), | |
37 'params' : DummySeries() | |
38 } | |
39 | |
40 class SdaSgdOptimizer: | |
41 def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0, series=default_series): | |
42 self.dataset = dataset | |
43 self.hp = hyperparameters | |
44 self.n_ins = n_ins | |
45 self.n_outs = n_outs | |
46 self.input_divider = input_divider | |
47 | |
48 self.series = series | |
49 | |
50 self.rng = numpy.random.RandomState(1234) | |
51 | |
52 self.init_datasets() | |
53 self.init_classifier() | |
54 | |
55 sys.stdout.flush() | |
56 | |
57 def init_datasets(self): | |
58 print "init_datasets" | |
59 sys.stdout.flush() | |
60 | |
61 train_set, valid_set, test_set = self.dataset | |
62 self.test_set_x, self.test_set_y = shared_dataset(test_set) | |
63 self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) | |
64 self.train_set_x, self.train_set_y = shared_dataset(train_set) | |
65 | |
66 # compute number of minibatches for training, validation and testing | |
67 self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size | |
68 self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size | |
69 # remove last batch in case it's incomplete | |
70 self.n_test_batches = (self.test_set_x.value.shape[0] / self.hp.minibatch_size) - 1 | |
71 | |
72 def init_classifier(self): | |
73 print "Constructing classifier" | |
74 | |
75 # we don't want to save arrays in DD objects, so | |
76 # we recreate those arrays here | |
77 nhl = self.hp.num_hidden_layers | |
78 layers_sizes = [self.hp.hidden_layers_sizes] * nhl | |
79 corruption_levels = [self.hp.corruption_levels] * nhl | |
80 | |
81 # construct the stacked denoising autoencoder class | |
82 self.classifier = SdA( \ | |
83 train_set_x= self.train_set_x, \ | |
84 train_set_y = self.train_set_y,\ | |
85 batch_size = self.hp.minibatch_size, \ | |
86 n_ins= self.n_ins, \ | |
87 hidden_layers_sizes = layers_sizes, \ | |
88 n_outs = self.n_outs, \ | |
89 corruption_levels = corruption_levels,\ | |
90 rng = self.rng,\ | |
91 pretrain_lr = self.hp.pretraining_lr, \ | |
92 finetune_lr = self.hp.finetuning_lr,\ | |
93 input_divider = self.input_divider ) | |
94 | |
95 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") | |
96 | |
97 sys.stdout.flush() | |
98 | |
99 def train(self): | |
100 self.pretrain() | |
101 self.finetune() | |
102 | |
103 def pretrain(self): | |
104 print "STARTING PRETRAINING, time = ", datetime.datetime.now() | |
105 sys.stdout.flush() | |
106 | |
107 time_acc_func = 0.0 | |
108 time_acc_total = 0.0 | |
109 | |
110 start_time = time.clock() | |
111 ## Pre-train layer-wise | |
112 for i in xrange(self.classifier.n_layers): | |
113 # go through pretraining epochs | |
114 for epoch in xrange(self.hp.pretraining_epochs_per_layer): | |
115 # go through the training set | |
116 for batch_index in xrange(self.n_train_batches): | |
117 t1 = time.clock() | |
118 c = self.classifier.pretrain_functions[i](batch_index) | |
119 t2 = time.clock() | |
120 | |
121 time_acc_func += t2 - t1 | |
122 | |
123 if batch_index % 500 == 0: | |
124 print "acc / total", time_acc_func / (t2 - start_time), time_acc_func | |
125 | |
126 self.series["reconstruction_error"].append((epoch, batch_index), c) | |
127 | |
128 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c | |
129 sys.stdout.flush() | |
130 | |
131 self.series['params'].append((epoch,), self.classifier.all_params) | |
132 | |
133 end_time = time.clock() | |
134 | |
135 print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) | |
136 self.hp.update({'pretraining_time': end_time-start_time}) | |
137 | |
138 sys.stdout.flush() | |
139 | |
140 def finetune(self): | |
141 print "STARTING FINETUNING, time = ", datetime.datetime.now() | |
142 | |
143 index = T.lscalar() # index to a [mini]batch | |
144 minibatch_size = self.hp.minibatch_size | |
145 | |
146 # create a function to compute the mistakes that are made by the model | |
147 # on the validation set, or testing set | |
148 shared_divider = theano.shared(numpy.asarray(self.input_divider, dtype=theano.config.floatX)) | |
149 test_model = theano.function([index], self.classifier.errors, | |
150 givens = { | |
151 self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider, | |
152 self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | |
153 | |
154 validate_model = theano.function([index], self.classifier.errors, | |
155 givens = { | |
156 self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider, | |
157 self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | |
158 | |
159 | |
160 # early-stopping parameters | |
161 patience = 10000 # look as this many examples regardless | |
162 patience_increase = 2. # wait this much longer when a new best is | |
163 # found | |
164 improvement_threshold = 0.995 # a relative improvement of this much is | |
165 # considered significant | |
166 validation_frequency = min(self.n_train_batches, patience/2) | |
167 # go through this many | |
168 # minibatche before checking the network | |
169 # on the validation set; in this case we | |
170 # check every epoch | |
171 | |
172 best_params = None | |
173 best_validation_loss = float('inf') | |
174 test_score = 0. | |
175 start_time = time.clock() | |
176 | |
177 done_looping = False | |
178 epoch = 0 | |
179 | |
180 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): | |
181 epoch = epoch + 1 | |
182 for minibatch_index in xrange(self.n_train_batches): | |
183 | |
184 cost_ij = self.classifier.finetune(minibatch_index) | |
185 iter = epoch * self.n_train_batches + minibatch_index | |
186 | |
187 self.series["training_error"].append((epoch, minibatch_index), cost_ij) | |
188 | |
189 if (iter+1) % validation_frequency == 0: | |
190 | |
191 validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] | |
192 this_validation_loss = numpy.mean(validation_losses) | |
193 | |
194 self.series["validation_error"].\ | |
195 append((epoch, minibatch_index), this_validation_loss*100.) | |
196 | |
197 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ | |
198 (epoch, minibatch_index+1, self.n_train_batches, \ | |
199 this_validation_loss*100.)) | |
200 | |
201 | |
202 # if we got the best validation score until now | |
203 if this_validation_loss < best_validation_loss: | |
204 | |
205 #improve patience if loss improvement is good enough | |
206 if this_validation_loss < best_validation_loss * \ | |
207 improvement_threshold : | |
208 patience = max(patience, iter * patience_increase) | |
209 | |
210 # save best validation score and iteration number | |
211 best_validation_loss = this_validation_loss | |
212 best_iter = iter | |
213 | |
214 # test it on the test set | |
215 test_losses = [test_model(i) for i in xrange(self.n_test_batches)] | |
216 test_score = numpy.mean(test_losses) | |
217 | |
218 self.series["test_error"].\ | |
219 append((epoch, minibatch_index), test_score*100.) | |
220 | |
221 print((' epoch %i, minibatch %i/%i, test error of best ' | |
222 'model %f %%') % | |
223 (epoch, minibatch_index+1, self.n_train_batches, | |
224 test_score*100.)) | |
225 | |
226 sys.stdout.flush() | |
227 | |
228 self.series['params'].append((epoch,), self.classifier.all_params) | |
229 | |
230 if patience <= iter : | |
231 done_looping = True | |
232 break | |
233 | |
234 end_time = time.clock() | |
235 self.hp.update({'finetuning_time':end_time-start_time,\ | |
236 'best_validation_error':best_validation_loss,\ | |
237 'test_score':test_score, | |
238 'num_finetuning_epochs':epoch}) | |
239 | |
240 print(('Optimization complete with best validation score of %f %%,' | |
241 'with test performance %f %%') % | |
242 (best_validation_loss * 100., test_score*100.)) | |
243 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) | |
244 | |
245 | |
246 |