Mercurial > ift6266
comparison writeup/nips2010_submission_supplementary.tex @ 556:a7193b092b0a
cleaner le supplementary material
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Thu, 03 Jun 2010 08:14:08 -0400 |
parents | 8b7e054d22bd |
children |
comparison
equal
deleted
inserted
replaced
555:b6dfba0a110c | 556:a7193b092b0a |
---|---|
14 | 14 |
15 \maketitle | 15 \maketitle |
16 | 16 |
17 \section*{Appendix I: Full results} | 17 \section*{Appendix I: Full results} |
18 | 18 |
19 These tables correspond to Figures 3 and 4 and contain the raw error rates for each model and dataset considered. | 19 These tables correspond to Figures 2 and 3 and contain the raw error rates for each model and dataset considered. |
20 They also contain additional data such as test errors on P07 and standard errors. | |
20 | 21 |
21 \begin{table}[h] | 22 \begin{table}[ht] |
22 \caption{Overall comparison of error rates ($\pm$ std.err.) on 62 character classes (10 digits + | 23 \caption{Overall comparison of error rates ($\pm$ std.err.) on 62 character classes (10 digits + |
23 26 lower + 26 upper), except for last columns -- digits only, between deep architecture with pre-training | 24 26 lower + 26 upper), except for last columns -- digits only, between deep architecture with pre-training |
24 (SDA=Stacked Denoising Autoencoder) and ordinary shallow architecture | 25 (SDA=Stacked Denoising Autoencoder) and ordinary shallow architecture |
25 (MLP=Multi-Layer Perceptron). The models shown are all trained using perturbed data (NISTP or P07) | 26 (MLP=Multi-Layer Perceptron). The models shown are all trained using perturbed data (NISTP or P07) |
26 and using a validation set to select hyper-parameters and other training choices. | 27 and using a validation set to select hyper-parameters and other training choices. |
46 \citep{Milgram+al-2005} & & & & 2.1\% $\pm$.12\% \\ \hline | 47 \citep{Milgram+al-2005} & & & & 2.1\% $\pm$.12\% \\ \hline |
47 \end{tabular} | 48 \end{tabular} |
48 \end{center} | 49 \end{center} |
49 \end{table} | 50 \end{table} |
50 | 51 |
51 \begin{table}[h] | 52 \begin{table}[ht] |
52 \caption{Relative change in error rates due to the use of perturbed training data, | 53 \caption{Relative change in error rates due to the use of perturbed training data, |
53 either using NISTP, for the MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. | 54 either using NISTP, for the MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. |
54 A positive value indicates that training on the perturbed data helped for the | 55 A positive value indicates that training on the perturbed data helped for the |
55 given test set (the first 3 columns on the 62-class tasks and the last one is | 56 given test set (the first 3 columns on the 62-class tasks and the last one is |
56 on the clean 10-class digits). Clearly, the deep learning models did benefit more | 57 on the clean 10-class digits). Clearly, the deep learning models did benefit more |
67 MLP0/MLP2-1 & -0.4\% & 49\% & 44\% & -29\% \\ \hline | 68 MLP0/MLP2-1 & -0.4\% & 49\% & 44\% & -29\% \\ \hline |
68 \end{tabular} | 69 \end{tabular} |
69 \end{center} | 70 \end{center} |
70 \end{table} | 71 \end{table} |
71 | 72 |
72 \begin{table}[h] | 73 \begin{table}[ht] |
73 \caption{Test error rates and relative change in error rates due to the use of | 74 \caption{Test error rates and relative change in error rates due to the use of |
74 a multi-task setting, i.e., training on each task in isolation vs training | 75 a multi-task setting, i.e., training on each task in isolation vs training |
75 for all three tasks together, for MLPs vs SDAs. The SDA benefits much | 76 for all three tasks together, for MLPs vs SDAs. The SDA benefits much |
76 more from the multi-task setting. All experiments on only on the | 77 more from the multi-task setting. All experiments on only on the |
77 unperturbed NIST data, using validation error for model selection. | 78 unperturbed NIST data, using validation error for model selection. |
89 SDA-upper & 5.93\% & 6.78\% & 13\% \\ \hline | 90 SDA-upper & 5.93\% & 6.78\% & 13\% \\ \hline |
90 \end{tabular} | 91 \end{tabular} |
91 \end{center} | 92 \end{center} |
92 \end{table} | 93 \end{table} |
93 | 94 |
94 {\small | 95 |
96 \newpage | |
97 | |
98 \vspace*{10mm} | |
99 %{\small | |
95 \bibliography{strings,strings-short,strings-shorter,ift6266_ml,aigaion-shorter,specials} | 100 \bibliography{strings,strings-short,strings-shorter,ift6266_ml,aigaion-shorter,specials} |
96 %\bibliographystyle{plainnat} | 101 %\bibliographystyle{plainnat} |
97 \bibliographystyle{unsrtnat} | 102 \bibliographystyle{unsrtnat} |
98 %\bibliographystyle{apalike} | 103 %\bibliographystyle{apalike} |
99 } | 104 %} |
100 | 105 |
101 \end{document} | 106 \end{document} |