comparison deep/stacked_dae/v_youssouf/stacked_dae.py @ 371:8cf52a1c8055

initial commit of sda with 36 classes
author youssouf
date Sun, 25 Apr 2010 12:31:22 -0400
parents
children
comparison
equal deleted inserted replaced
336:a79db7cee035 371:8cf52a1c8055
1 #!/usr/bin/python
2 # coding: utf-8
3
4 import numpy
5 import theano
6 import time
7 import theano.tensor as T
8 from theano.tensor.shared_randomstreams import RandomStreams
9 import copy
10
11 from utils import update_locals
12
13 # taken from LeDeepNet/daa.py
14 # has a special case when taking log(0) (defined =0)
15 # modified to not take the mean anymore
16 from theano.tensor.xlogx import xlogx, xlogy0
17 # it's target*log(output)
18 def binary_cross_entropy(target, output, sum_axis=1):
19 XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output))
20 return -T.sum(XE, axis=sum_axis)
21
22 class LogisticRegression(object):
23 def __init__(self, input, n_in, n_out, detection_mode):
24 # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
25 self.W = theano.shared( value=numpy.zeros((n_in,n_out),
26 dtype = theano.config.floatX) )
27 # initialize the baises b as a vector of n_out 0s
28 self.b = theano.shared( value=numpy.zeros((n_out,),
29 dtype = theano.config.floatX) )
30 # compute vector of class-membership probabilities in symbolic form
31 if detection_mode:
32 self.p_y_given_x = T.nnet.sigmoid(T.dot(input, self.W)+self.b)
33 else:
34 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
35
36 # compute prediction as class whose probability is maximal in
37 # symbolic form
38 self.y_pred=T.argmax(self.p_y_given_x, axis=1)
39
40 # list of parameters for this layer
41 self.params = [self.W, self.b]
42
43
44 def negative_log_likelihood(self, y):
45 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
46
47 def cross_entropy(self, y):
48 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]+T.sum(T.log(1-self.p_y_given_x), axis=1)-T.log(1-self.p_y_given_x)[T.arange(y.shape[0]),y])
49
50 def errors(self, y):
51 # check if y has same dimension of y_pred
52 if y.ndim != self.y_pred.ndim:
53 raise TypeError('y should have the same shape as self.y_pred',
54 ('y', target.type, 'y_pred', self.y_pred.type))
55
56 # check if y is of the correct datatype
57 if y.dtype.startswith('int'):
58 # the T.neq operator returns a vector of 0s and 1s, where 1
59 # represents a mistake in prediction
60 return T.mean(T.neq(self.y_pred, y))
61 else:
62 raise NotImplementedError()
63
64
65 class SigmoidalLayer(object):
66 def __init__(self, rng, input, n_in, n_out):
67 self.input = input
68
69 W_values = numpy.asarray( rng.uniform( \
70 low = -numpy.sqrt(6./(n_in+n_out)), \
71 high = numpy.sqrt(6./(n_in+n_out)), \
72 size = (n_in, n_out)), dtype = theano.config.floatX)
73 self.W = theano.shared(value = W_values)
74
75 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
76 self.b = theano.shared(value= b_values)
77
78 self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b)
79 self.params = [self.W, self.b]
80
81
82
83 class dA(object):
84 def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\
85 input = None, shared_W = None, shared_b = None):
86 self.n_visible = n_visible
87 self.n_hidden = n_hidden
88
89 # create a Theano random generator that gives symbolic random values
90 theano_rng = RandomStreams()
91
92 if shared_W != None and shared_b != None :
93 self.W = shared_W
94 self.b = shared_b
95 else:
96 # initial values for weights and biases
97 # note : W' was written as `W_prime` and b' as `b_prime`
98
99 # W is initialized with `initial_W` which is uniformely sampled
100 # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible)
101 # the output of uniform if converted using asarray to dtype
102 # theano.config.floatX so that the code is runable on GPU
103 initial_W = numpy.asarray( numpy.random.uniform( \
104 low = -numpy.sqrt(6./(n_hidden+n_visible)), \
105 high = numpy.sqrt(6./(n_hidden+n_visible)), \
106 size = (n_visible, n_hidden)), dtype = theano.config.floatX)
107 initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX)
108
109
110 # theano shared variables for weights and biases
111 self.W = theano.shared(value = initial_W, name = "W")
112 self.b = theano.shared(value = initial_b, name = "b")
113
114
115 initial_b_prime= numpy.zeros(n_visible)
116 # tied weights, therefore W_prime is W transpose
117 self.W_prime = self.W.T
118 self.b_prime = theano.shared(value = initial_b_prime, name = "b'")
119
120 # if no input is given, generate a variable representing the input
121 if input == None :
122 # we use a matrix because we expect a minibatch of several examples,
123 # each example being a row
124 self.x = T.matrix(name = 'input')
125 else:
126 self.x = input
127 # Equation (1)
128 # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs
129 # note : first argument of theano.rng.binomial is the shape(size) of
130 # random numbers that it should produce
131 # second argument is the number of trials
132 # third argument is the probability of success of any trial
133 #
134 # this will produce an array of 0s and 1s where 1 has a
135 # probability of 1 - ``corruption_level`` and 0 with
136 # ``corruption_level``
137 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level, dtype=theano.config.floatX) * self.x
138 # Equation (2)
139 # note : y is stored as an attribute of the class so that it can be
140 # used later when stacking dAs.
141 self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b)
142 # Equation (3)
143 #self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime)
144 # Equation (4)
145 # note : we sum over the size of a datapoint; if we are using minibatches,
146 # L will be a vector, with one entry per example in minibatch
147 #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 )
148 #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1)
149
150 # bypassing z to avoid running to log(0)
151 z_a = T.dot(self.y, self.W_prime) + self.b_prime
152 log_sigmoid = T.log(1.) - T.log(1.+T.exp(-z_a))
153 # log(1-sigmoid(z_a))
154 log_1_sigmoid = -z_a - T.log(1.+T.exp(-z_a))
155 self.L = -T.sum( self.x * (log_sigmoid) \
156 + (1.0-self.x) * (log_1_sigmoid), axis=1 )
157
158 # I added this epsilon to avoid getting log(0) and 1/0 in grad
159 # This means conceptually that there'd be no probability of 0, but that
160 # doesn't seem to me as important (maybe I'm wrong?).
161 #eps = 0.00000001
162 #eps_1 = 1-eps
163 #self.L = - T.sum( self.x * T.log(eps + eps_1*self.z) \
164 # + (1-self.x)*T.log(eps + eps_1*(1-self.z)), axis=1 )
165 # note : L is now a vector, where each element is the cross-entropy cost
166 # of the reconstruction of the corresponding example of the
167 # minibatch. We need to compute the average of all these to get
168 # the cost of the minibatch
169 self.cost = T.mean(self.L)
170
171 self.params = [ self.W, self.b, self.b_prime ]
172
173
174 class SdA(object):
175 def __init__(self, batch_size, n_ins,
176 hidden_layers_sizes, n_outs,
177 corruption_levels, rng, pretrain_lr, finetune_lr, detection_mode):
178 # Just to make sure those are not modified somewhere else afterwards
179 hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes)
180 corruption_levels = copy.deepcopy(corruption_levels)
181
182 update_locals(self, locals())
183
184 self.layers = []
185 self.pretrain_functions = []
186 self.params = []
187 # MODIF: added this so we also get the b_primes
188 # (not used for finetuning... still using ".params")
189 self.all_params = []
190 self.n_layers = len(hidden_layers_sizes)
191 self.logistic_params = []
192
193 print "Creating SdA with params:"
194 print "batch_size", batch_size
195 print "hidden_layers_sizes", hidden_layers_sizes
196 print "corruption_levels", corruption_levels
197 print "n_ins", n_ins
198 print "n_outs", n_outs
199 print "pretrain_lr", pretrain_lr
200 print "finetune_lr", finetune_lr
201 print "detection_mode", detection_mode
202 print "----"
203
204 if len(hidden_layers_sizes) < 1 :
205 raiseException (' You must have at least one hidden layer ')
206
207
208 # allocate symbolic variables for the data
209 #index = T.lscalar() # index to a [mini]batch
210 self.x = T.matrix('x') # the data is presented as rasterized images
211 self.y = T.ivector('y') # the labels are presented as 1D vector of
212 # [int] labels
213 self.finetune_lr = T.fscalar('finetune_lr') #To get a dynamic finetune learning rate
214
215 for i in xrange( self.n_layers ):
216 # construct the sigmoidal layer
217
218 # the size of the input is either the number of hidden units of
219 # the layer below or the input size if we are on the first layer
220 if i == 0 :
221 input_size = n_ins
222 else:
223 input_size = hidden_layers_sizes[i-1]
224
225 # the input to this layer is either the activation of the hidden
226 # layer below or the input of the SdA if you are on the first
227 # layer
228 if i == 0 :
229 layer_input = self.x
230 else:
231 layer_input = self.layers[-1].output
232
233 layer = SigmoidalLayer(rng, layer_input, input_size,
234 hidden_layers_sizes[i] )
235 # add the layer to the
236 self.layers += [layer]
237 self.params += layer.params
238
239 # Construct a denoising autoencoder that shared weights with this
240 # layer
241 dA_layer = dA(input_size, hidden_layers_sizes[i], \
242 corruption_level = corruption_levels[0],\
243 input = layer_input, \
244 shared_W = layer.W, shared_b = layer.b)
245
246 self.all_params += dA_layer.params
247
248 # Construct a function that trains this dA
249 # compute gradients of layer parameters
250 gparams = T.grad(dA_layer.cost, dA_layer.params)
251 # compute the list of updates
252 updates = {}
253 for param, gparam in zip(dA_layer.params, gparams):
254 updates[param] = param - gparam * pretrain_lr
255
256 # create a function that trains the dA
257 update_fn = theano.function([self.x], dA_layer.cost, \
258 updates = updates)#,
259 # givens = {
260 # self.x : ensemble})
261 # collect this function into a list
262 #update_fn = theano.function([index], dA_layer.cost, \
263 # updates = updates,
264 # givens = {
265 # self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider})
266 # collect this function into a list
267 self.pretrain_functions += [update_fn]
268
269
270 # We now need to add a logistic layer on top of the SDA
271 self.logLayer = LogisticRegression(\
272 input = self.layers[-1].output,\
273 n_in = hidden_layers_sizes[-1], n_out = n_outs, detection_mode = detection_mode)
274
275 self.params += self.logLayer.params
276 self.all_params += self.logLayer.params
277 # construct a function that implements one step of finetunining
278
279
280 if detection_mode:
281 # compute the cost, defined as the negative log likelihood
282 cost = self.logLayer.cross_entropy(self.y)
283 # compute the gradients with respect to the logistic regression parameters
284 gparams = T.grad(cost, self.logLayer.params)
285 # compute list of updates
286 updates = {}
287 for param,gparam in zip(self.logLayer.params, gparams):
288 updates[param] = param - gparam*finetune_lr
289
290 else:
291 # compute the cost, defined as the negative log likelihood
292 cost = self.logLayer.negative_log_likelihood(self.y)
293 # compute the gradients with respect to the model parameters
294 gparams = T.grad(cost, self.params)
295 # compute list of updates
296 updates = {}
297 for param,gparam in zip(self.params, gparams):
298 updates[param] = param - gparam*self.finetune_lr
299
300 self.finetune = theano.function([self.x,self.y,self.finetune_lr], cost,
301 updates = updates)#,
302
303 # symbolic variable that points to the number of errors made on the
304 # minibatch given by self.x and self.y
305
306 self.errors = self.logLayer.errors(self.y)
307
308
309 #STRUCTURE FOR THE FINETUNING OF THE LOGISTIC REGRESSION ON THE TOP WITH
310 #ALL HIDDEN LAYERS AS INPUT
311 '''
312
313 all_h=[]
314 for i in xrange(self.n_layers):
315 all_h.append(self.layers[i].output)
316 self.all_hidden=T.concatenate(all_h,axis=1)
317
318
319 self.logLayer2 = LogisticRegression(\
320 input = self.all_hidden,\
321 n_in = sum(hidden_layers_sizes), n_out = n_outs)
322 #n_in=hidden_layers_sizes[0],n_out=n_outs)
323
324 #self.logistic_params+= self.logLayer2.params
325 # construct a function that implements one step of finetunining
326
327 self.logistic_params+=self.logLayer2.params
328 # compute the cost, defined as the negative log likelihood
329 if DETECTION_MODE:
330 cost2 = self.logLayer2.cross_entropy(self.y)
331 else:
332 cost2 = self.logLayer2.negative_log_likelihood(self.y)
333 # compute the gradients with respect to the model parameters
334 gparams2 = T.grad(cost2, self.logistic_params)
335
336 # compute list of updates
337 updates2 = {}
338 for param,gparam in zip(self.logistic_params, gparams2):
339 updates2[param] = param - gparam*finetune_lr
340
341 self.finetune2 = theano.function([self.x,self.y], cost2,
342 updates = updates2)
343
344 # symbolic variable that points to the number of errors made on the
345 # minibatch given by self.x and self.y
346
347 self.errors2 = self.logLayer2.errors(self.y)
348 '''
349
350 if __name__ == '__main__':
351 import sys
352 args = sys.argv[1:]
353