comparison deep/stacked_dae/v_youssouf/sgd_optimization.py @ 371:8cf52a1c8055

initial commit of sda with 36 classes
author youssouf
date Sun, 25 Apr 2010 12:31:22 -0400
parents
children
comparison
equal deleted inserted replaced
336:a79db7cee035 371:8cf52a1c8055
1 #!/usr/bin/python
2 # coding: utf-8
3
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial
5
6 import numpy
7 import theano
8 import time
9 import datetime
10 import theano.tensor as T
11 import sys
12 import pickle
13
14 from jobman import DD
15 import jobman, jobman.sql
16 from copy import copy
17
18 from stacked_dae import SdA
19
20 from ift6266.utils.seriestables import *
21
22 #For test purpose only
23 buffersize=1000
24
25 default_series = { \
26 'reconstruction_error' : DummySeries(),
27 'training_error' : DummySeries(),
28 'validation_error' : DummySeries(),
29 'test_error' : DummySeries(),
30 'params' : DummySeries()
31 }
32
33 def itermax(iter, max):
34 for i,it in enumerate(iter):
35 if i >= max:
36 break
37 yield it
38
39 class SdaSgdOptimizer:
40 def __init__(self, dataset, hyperparameters, n_ins, n_outs,
41 examples_per_epoch, series=default_series, max_minibatches=None):
42 self.dataset = dataset
43 self.hp = hyperparameters
44 self.n_ins = n_ins
45 self.n_outs = n_outs
46 self.parameters_pre=[]
47
48 self.max_minibatches = max_minibatches
49 print "SdaSgdOptimizer, max_minibatches =", max_minibatches
50 print "Reduce Label: ", self.hp.reduce_label
51
52 self.ex_per_epoch = examples_per_epoch
53 self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size
54
55 self.series = series
56
57 self.rng = numpy.random.RandomState(1234)
58
59 self.init_classifier()
60
61 sys.stdout.flush()
62
63 def init_classifier(self):
64 print "Constructing classifier"
65
66 # we don't want to save arrays in DD objects, so
67 # we recreate those arrays here
68 nhl = self.hp.num_hidden_layers
69 layers_sizes = [self.hp.hidden_layers_sizes] * nhl
70 corruption_levels = [self.hp.corruption_levels] * nhl
71
72 # construct the stacked denoising autoencoder class
73 self.classifier = SdA( \
74 batch_size = self.hp.minibatch_size, \
75 n_ins= self.n_ins, \
76 hidden_layers_sizes = layers_sizes, \
77 n_outs = self.n_outs, \
78 corruption_levels = corruption_levels,\
79 rng = self.rng,\
80 pretrain_lr = self.hp.pretraining_lr, \
81 finetune_lr = self.hp.finetuning_lr, \
82 detection_mode = self.hp.detection_mode, \
83 )
84
85 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
86
87 sys.stdout.flush()
88
89 def train(self):
90 self.pretrain(self.dataset)
91 self.finetune(self.dataset)
92
93 def pretrain(self,dataset):
94 print "STARTING PRETRAINING, time = ", datetime.datetime.now()
95 sys.stdout.flush()
96
97 un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file
98
99 start_time = time.clock()
100 ## Pre-train layer-wise
101 for i in xrange(self.classifier.n_layers):
102 # go through pretraining epochs
103 for epoch in xrange(self.hp.pretraining_epochs_per_layer):
104 # go through the training set
105 batch_index=0
106 count=0
107 num_files=0
108 for x,y in dataset.train(self.hp.minibatch_size):
109 c = self.classifier.pretrain_functions[i](x)
110 count +=1
111
112 self.series["reconstruction_error"].append((epoch, batch_index), c)
113 batch_index+=1
114
115 #if batch_index % 100 == 0:
116 # print "100 batches"
117
118 # useful when doing tests
119 if self.max_minibatches and batch_index >= self.max_minibatches:
120 break
121
122 #When we pass through the data only once (the case with P07)
123 #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M)
124 if self.hp.pretraining_epochs_per_layer == 1 and count%un_fichier == 0:
125 print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c
126 num_files+=1
127 sys.stdout.flush()
128 self.series['params'].append((num_files,), self.classifier.all_params)
129
130 #When NIST is used
131 if self.hp.pretraining_epochs_per_layer > 1:
132 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c
133 sys.stdout.flush()
134
135 self.series['params'].append((epoch,), self.classifier.all_params)
136
137 end_time = time.clock()
138
139 print ('Pretraining took %f minutes' %((end_time-start_time)/60.))
140 self.hp.update({'pretraining_time': end_time-start_time})
141
142 sys.stdout.flush()
143
144 #To be able to load them later for tests on finetune
145 self.parameters_pre=[copy(x.value) for x in self.classifier.params]
146 f = open('params_pretrain.txt', 'w')
147 pickle.dump(self.parameters_pre,f)
148 f.close()
149
150
151 def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0):
152
153 if special != 0 and special != 1:
154 sys.exit('Bad value for variable special. Must be in {0,1}')
155 print "STARTING FINETUNING, time = ", datetime.datetime.now()
156
157 minibatch_size = self.hp.minibatch_size
158 if ind_test == 0 or ind_test == 20:
159 nom_test = "NIST"
160 nom_train="P07"
161 else:
162 nom_test = "P07"
163 nom_train = "NIST"
164
165
166 # create a function to compute the mistakes that are made by the model
167 # on the validation set, or testing set
168 test_model = \
169 theano.function(
170 [self.classifier.x,self.classifier.y], self.classifier.errors)
171 # givens = {
172 # self.classifier.x: ensemble_x,
173 # self.classifier.y: ensemble_y]})
174
175 validate_model = \
176 theano.function(
177 [self.classifier.x,self.classifier.y], self.classifier.errors)
178 # givens = {
179 # self.classifier.x: ,
180 # self.classifier.y: ]})
181
182
183 # early-stopping parameters
184 patience = 10000 # look as this many examples regardless
185 patience_increase = 2. # wait this much longer when a new best is
186 # found
187 improvement_threshold = 0.995 # a relative improvement of this much is
188 # considered significant
189 validation_frequency = min(self.mb_per_epoch, patience/2)
190 # go through this many
191 # minibatche before checking the network
192 # on the validation set; in this case we
193 # check every epoch
194 if self.max_minibatches and validation_frequency > self.max_minibatches:
195 validation_frequency = self.max_minibatches / 2
196
197 best_params = None
198 best_validation_loss = float('inf')
199 test_score = 0.
200 start_time = time.clock()
201
202 done_looping = False
203 epoch = 0
204
205 total_mb_index = 0
206 minibatch_index = 0
207 parameters_finetune=[]
208
209 if ind_test == 21:
210 learning_rate = self.hp.finetuning_lr / 10.0
211 else:
212 learning_rate = self.hp.finetuning_lr #The initial finetune lr
213
214
215 while (epoch < num_finetune) and (not done_looping):
216 epoch = epoch + 1
217
218 for x,y in dataset.train(minibatch_size,bufsize=buffersize):
219 minibatch_index += 1
220
221 if self.hp.reduce_label:
222 y[y > 35] = y[y > 35]-26
223
224 if special == 0:
225 cost_ij = self.classifier.finetune(x,y,learning_rate)
226 elif special == 1:
227 cost_ij = self.classifier.finetune2(x,y)
228 total_mb_index += 1
229
230 self.series["training_error"].append((epoch, minibatch_index), cost_ij)
231
232 if (total_mb_index+1) % validation_frequency == 0:
233 #minibatch_index += 1
234 #The validation set is always NIST (we want the model to be good on NIST)
235 if ind_test == 0 | ind_test == 20:
236 iter=dataset_test.valid(minibatch_size,bufsize=buffersize)
237 else:
238 iter = dataset.valid(minibatch_size,bufsize=buffersize)
239 if self.max_minibatches:
240 iter = itermax(iter, self.max_minibatches)
241 validation_losses = [validate_model(x,y) for x,y in iter]
242 this_validation_loss = numpy.mean(validation_losses)
243
244 self.series["validation_error"].\
245 append((epoch, minibatch_index), this_validation_loss*100.)
246
247 print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \
248 (epoch, minibatch_index+1, \
249 this_validation_loss*100.))
250
251
252 # if we got the best validation score until now
253 if this_validation_loss < best_validation_loss:
254
255 #improve patience if loss improvement is good enough
256 if this_validation_loss < best_validation_loss * \
257 improvement_threshold :
258 patience = max(patience, total_mb_index * patience_increase)
259
260 # save best validation score, iteration number and parameters
261 best_validation_loss = this_validation_loss
262 best_iter = total_mb_index
263 parameters_finetune=[copy(x.value) for x in self.classifier.params]
264
265 # test it on the test set
266 iter = dataset.test(minibatch_size,bufsize=buffersize)
267 if self.max_minibatches:
268 iter = itermax(iter, self.max_minibatches)
269 test_losses = [test_model(x,y) for x,y in iter]
270 test_score = numpy.mean(test_losses)
271
272 #test it on the second test set
273 iter2 = dataset_test.test(minibatch_size,bufsize=buffersize)
274 if self.max_minibatches:
275 iter2 = itermax(iter2, self.max_minibatches)
276 test_losses2 = [test_model(x,y) for x,y in iter2]
277 test_score2 = numpy.mean(test_losses2)
278
279 self.series["test_error"].\
280 append((epoch, minibatch_index), test_score*100.)
281
282 print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best '
283 'model %f %%') %
284 (epoch, minibatch_index+1,nom_train,
285 test_score*100.))
286
287 print((' epoch %i, minibatch %i, test error on dataset %s of best '
288 'model %f %%') %
289 (epoch, minibatch_index+1,nom_test,
290 test_score2*100.))
291
292 if patience <= total_mb_index:
293 done_looping = True
294 break #to exit the FOR loop
295
296 sys.stdout.flush()
297
298 # useful when doing tests
299 if self.max_minibatches and minibatch_index >= self.max_minibatches:
300 break
301
302 if decrease == 1:
303 learning_rate /= 2 #divide the learning rate by 2 for each new epoch
304
305 self.series['params'].append((epoch,), self.classifier.all_params)
306
307 if done_looping == True: #To exit completly the fine-tuning
308 break #to exit the WHILE loop
309
310 end_time = time.clock()
311 self.hp.update({'finetuning_time':end_time-start_time,\
312 'best_validation_error':best_validation_loss,\
313 'test_score':test_score,
314 'num_finetuning_epochs':epoch})
315
316 print(('\nOptimization complete with best validation score of %f %%,'
317 'with test performance %f %% on dataset %s ') %
318 (best_validation_loss * 100., test_score*100.,nom_train))
319 print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.))
320
321 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))
322
323 sys.stdout.flush()
324
325 #Save a copy of the parameters in a file to be able to get them in the future
326
327 if special == 1: #To keep a track of the value of the parameters
328 f = open('params_finetune_stanford.txt', 'w')
329 pickle.dump(parameters_finetune,f)
330 f.close()
331
332 elif ind_test == 0 | ind_test == 20: #To keep a track of the value of the parameters
333 f = open('params_finetune_P07.txt', 'w')
334 pickle.dump(parameters_finetune,f)
335 f.close()
336
337
338 elif ind_test== 1: #For the run with 2 finetunes. It will be faster.
339 f = open('params_finetune_NIST.txt', 'w')
340 pickle.dump(parameters_finetune,f)
341 f.close()
342
343 elif ind_test== 21: #To keep a track of the value of the parameters
344 f = open('params_finetune_P07_then_NIST.txt', 'w')
345 pickle.dump(parameters_finetune,f)
346 f.close()
347
348
349 #Set parameters like they where right after pre-train or finetune
350 def reload_parameters(self,which):
351
352 #self.parameters_pre=pickle.load('params_pretrain.txt')
353 f = open(which)
354 self.parameters_pre=pickle.load(f)
355 f.close()
356 for idx,x in enumerate(self.parameters_pre):
357 if x.dtype=='float64':
358 self.classifier.params[idx].value=theano._asarray(copy(x),dtype=theano.config.floatX)
359 else:
360 self.classifier.params[idx].value=copy(x)
361
362 def training_error(self,dataset):
363 # create a function to compute the mistakes that are made by the model
364 # on the validation set, or testing set
365 test_model = \
366 theano.function(
367 [self.classifier.x,self.classifier.y], self.classifier.errors)
368
369 iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize)
370 train_losses2 = [test_model(x,y) for x,y in iter2]
371 train_score2 = numpy.mean(train_losses2)
372 print "Training error is: " + str(train_score2)
373
374
375
376