Mercurial > ift6266
comparison deep/stacked_dae/v_youssouf/sgd_optimization.py @ 371:8cf52a1c8055
initial commit of sda with 36 classes
author | youssouf |
---|---|
date | Sun, 25 Apr 2010 12:31:22 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
336:a79db7cee035 | 371:8cf52a1c8055 |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial | |
5 | |
6 import numpy | |
7 import theano | |
8 import time | |
9 import datetime | |
10 import theano.tensor as T | |
11 import sys | |
12 import pickle | |
13 | |
14 from jobman import DD | |
15 import jobman, jobman.sql | |
16 from copy import copy | |
17 | |
18 from stacked_dae import SdA | |
19 | |
20 from ift6266.utils.seriestables import * | |
21 | |
22 #For test purpose only | |
23 buffersize=1000 | |
24 | |
25 default_series = { \ | |
26 'reconstruction_error' : DummySeries(), | |
27 'training_error' : DummySeries(), | |
28 'validation_error' : DummySeries(), | |
29 'test_error' : DummySeries(), | |
30 'params' : DummySeries() | |
31 } | |
32 | |
33 def itermax(iter, max): | |
34 for i,it in enumerate(iter): | |
35 if i >= max: | |
36 break | |
37 yield it | |
38 | |
39 class SdaSgdOptimizer: | |
40 def __init__(self, dataset, hyperparameters, n_ins, n_outs, | |
41 examples_per_epoch, series=default_series, max_minibatches=None): | |
42 self.dataset = dataset | |
43 self.hp = hyperparameters | |
44 self.n_ins = n_ins | |
45 self.n_outs = n_outs | |
46 self.parameters_pre=[] | |
47 | |
48 self.max_minibatches = max_minibatches | |
49 print "SdaSgdOptimizer, max_minibatches =", max_minibatches | |
50 print "Reduce Label: ", self.hp.reduce_label | |
51 | |
52 self.ex_per_epoch = examples_per_epoch | |
53 self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size | |
54 | |
55 self.series = series | |
56 | |
57 self.rng = numpy.random.RandomState(1234) | |
58 | |
59 self.init_classifier() | |
60 | |
61 sys.stdout.flush() | |
62 | |
63 def init_classifier(self): | |
64 print "Constructing classifier" | |
65 | |
66 # we don't want to save arrays in DD objects, so | |
67 # we recreate those arrays here | |
68 nhl = self.hp.num_hidden_layers | |
69 layers_sizes = [self.hp.hidden_layers_sizes] * nhl | |
70 corruption_levels = [self.hp.corruption_levels] * nhl | |
71 | |
72 # construct the stacked denoising autoencoder class | |
73 self.classifier = SdA( \ | |
74 batch_size = self.hp.minibatch_size, \ | |
75 n_ins= self.n_ins, \ | |
76 hidden_layers_sizes = layers_sizes, \ | |
77 n_outs = self.n_outs, \ | |
78 corruption_levels = corruption_levels,\ | |
79 rng = self.rng,\ | |
80 pretrain_lr = self.hp.pretraining_lr, \ | |
81 finetune_lr = self.hp.finetuning_lr, \ | |
82 detection_mode = self.hp.detection_mode, \ | |
83 ) | |
84 | |
85 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") | |
86 | |
87 sys.stdout.flush() | |
88 | |
89 def train(self): | |
90 self.pretrain(self.dataset) | |
91 self.finetune(self.dataset) | |
92 | |
93 def pretrain(self,dataset): | |
94 print "STARTING PRETRAINING, time = ", datetime.datetime.now() | |
95 sys.stdout.flush() | |
96 | |
97 un_fichier=int(819200.0/self.hp.minibatch_size) #Number of batches in a P07 file | |
98 | |
99 start_time = time.clock() | |
100 ## Pre-train layer-wise | |
101 for i in xrange(self.classifier.n_layers): | |
102 # go through pretraining epochs | |
103 for epoch in xrange(self.hp.pretraining_epochs_per_layer): | |
104 # go through the training set | |
105 batch_index=0 | |
106 count=0 | |
107 num_files=0 | |
108 for x,y in dataset.train(self.hp.minibatch_size): | |
109 c = self.classifier.pretrain_functions[i](x) | |
110 count +=1 | |
111 | |
112 self.series["reconstruction_error"].append((epoch, batch_index), c) | |
113 batch_index+=1 | |
114 | |
115 #if batch_index % 100 == 0: | |
116 # print "100 batches" | |
117 | |
118 # useful when doing tests | |
119 if self.max_minibatches and batch_index >= self.max_minibatches: | |
120 break | |
121 | |
122 #When we pass through the data only once (the case with P07) | |
123 #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M) | |
124 if self.hp.pretraining_epochs_per_layer == 1 and count%un_fichier == 0: | |
125 print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c | |
126 num_files+=1 | |
127 sys.stdout.flush() | |
128 self.series['params'].append((num_files,), self.classifier.all_params) | |
129 | |
130 #When NIST is used | |
131 if self.hp.pretraining_epochs_per_layer > 1: | |
132 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c | |
133 sys.stdout.flush() | |
134 | |
135 self.series['params'].append((epoch,), self.classifier.all_params) | |
136 | |
137 end_time = time.clock() | |
138 | |
139 print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) | |
140 self.hp.update({'pretraining_time': end_time-start_time}) | |
141 | |
142 sys.stdout.flush() | |
143 | |
144 #To be able to load them later for tests on finetune | |
145 self.parameters_pre=[copy(x.value) for x in self.classifier.params] | |
146 f = open('params_pretrain.txt', 'w') | |
147 pickle.dump(self.parameters_pre,f) | |
148 f.close() | |
149 | |
150 | |
151 def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0): | |
152 | |
153 if special != 0 and special != 1: | |
154 sys.exit('Bad value for variable special. Must be in {0,1}') | |
155 print "STARTING FINETUNING, time = ", datetime.datetime.now() | |
156 | |
157 minibatch_size = self.hp.minibatch_size | |
158 if ind_test == 0 or ind_test == 20: | |
159 nom_test = "NIST" | |
160 nom_train="P07" | |
161 else: | |
162 nom_test = "P07" | |
163 nom_train = "NIST" | |
164 | |
165 | |
166 # create a function to compute the mistakes that are made by the model | |
167 # on the validation set, or testing set | |
168 test_model = \ | |
169 theano.function( | |
170 [self.classifier.x,self.classifier.y], self.classifier.errors) | |
171 # givens = { | |
172 # self.classifier.x: ensemble_x, | |
173 # self.classifier.y: ensemble_y]}) | |
174 | |
175 validate_model = \ | |
176 theano.function( | |
177 [self.classifier.x,self.classifier.y], self.classifier.errors) | |
178 # givens = { | |
179 # self.classifier.x: , | |
180 # self.classifier.y: ]}) | |
181 | |
182 | |
183 # early-stopping parameters | |
184 patience = 10000 # look as this many examples regardless | |
185 patience_increase = 2. # wait this much longer when a new best is | |
186 # found | |
187 improvement_threshold = 0.995 # a relative improvement of this much is | |
188 # considered significant | |
189 validation_frequency = min(self.mb_per_epoch, patience/2) | |
190 # go through this many | |
191 # minibatche before checking the network | |
192 # on the validation set; in this case we | |
193 # check every epoch | |
194 if self.max_minibatches and validation_frequency > self.max_minibatches: | |
195 validation_frequency = self.max_minibatches / 2 | |
196 | |
197 best_params = None | |
198 best_validation_loss = float('inf') | |
199 test_score = 0. | |
200 start_time = time.clock() | |
201 | |
202 done_looping = False | |
203 epoch = 0 | |
204 | |
205 total_mb_index = 0 | |
206 minibatch_index = 0 | |
207 parameters_finetune=[] | |
208 | |
209 if ind_test == 21: | |
210 learning_rate = self.hp.finetuning_lr / 10.0 | |
211 else: | |
212 learning_rate = self.hp.finetuning_lr #The initial finetune lr | |
213 | |
214 | |
215 while (epoch < num_finetune) and (not done_looping): | |
216 epoch = epoch + 1 | |
217 | |
218 for x,y in dataset.train(minibatch_size,bufsize=buffersize): | |
219 minibatch_index += 1 | |
220 | |
221 if self.hp.reduce_label: | |
222 y[y > 35] = y[y > 35]-26 | |
223 | |
224 if special == 0: | |
225 cost_ij = self.classifier.finetune(x,y,learning_rate) | |
226 elif special == 1: | |
227 cost_ij = self.classifier.finetune2(x,y) | |
228 total_mb_index += 1 | |
229 | |
230 self.series["training_error"].append((epoch, minibatch_index), cost_ij) | |
231 | |
232 if (total_mb_index+1) % validation_frequency == 0: | |
233 #minibatch_index += 1 | |
234 #The validation set is always NIST (we want the model to be good on NIST) | |
235 if ind_test == 0 | ind_test == 20: | |
236 iter=dataset_test.valid(minibatch_size,bufsize=buffersize) | |
237 else: | |
238 iter = dataset.valid(minibatch_size,bufsize=buffersize) | |
239 if self.max_minibatches: | |
240 iter = itermax(iter, self.max_minibatches) | |
241 validation_losses = [validate_model(x,y) for x,y in iter] | |
242 this_validation_loss = numpy.mean(validation_losses) | |
243 | |
244 self.series["validation_error"].\ | |
245 append((epoch, minibatch_index), this_validation_loss*100.) | |
246 | |
247 print('epoch %i, minibatch %i, validation error on NIST : %f %%' % \ | |
248 (epoch, minibatch_index+1, \ | |
249 this_validation_loss*100.)) | |
250 | |
251 | |
252 # if we got the best validation score until now | |
253 if this_validation_loss < best_validation_loss: | |
254 | |
255 #improve patience if loss improvement is good enough | |
256 if this_validation_loss < best_validation_loss * \ | |
257 improvement_threshold : | |
258 patience = max(patience, total_mb_index * patience_increase) | |
259 | |
260 # save best validation score, iteration number and parameters | |
261 best_validation_loss = this_validation_loss | |
262 best_iter = total_mb_index | |
263 parameters_finetune=[copy(x.value) for x in self.classifier.params] | |
264 | |
265 # test it on the test set | |
266 iter = dataset.test(minibatch_size,bufsize=buffersize) | |
267 if self.max_minibatches: | |
268 iter = itermax(iter, self.max_minibatches) | |
269 test_losses = [test_model(x,y) for x,y in iter] | |
270 test_score = numpy.mean(test_losses) | |
271 | |
272 #test it on the second test set | |
273 iter2 = dataset_test.test(minibatch_size,bufsize=buffersize) | |
274 if self.max_minibatches: | |
275 iter2 = itermax(iter2, self.max_minibatches) | |
276 test_losses2 = [test_model(x,y) for x,y in iter2] | |
277 test_score2 = numpy.mean(test_losses2) | |
278 | |
279 self.series["test_error"].\ | |
280 append((epoch, minibatch_index), test_score*100.) | |
281 | |
282 print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best ' | |
283 'model %f %%') % | |
284 (epoch, minibatch_index+1,nom_train, | |
285 test_score*100.)) | |
286 | |
287 print((' epoch %i, minibatch %i, test error on dataset %s of best ' | |
288 'model %f %%') % | |
289 (epoch, minibatch_index+1,nom_test, | |
290 test_score2*100.)) | |
291 | |
292 if patience <= total_mb_index: | |
293 done_looping = True | |
294 break #to exit the FOR loop | |
295 | |
296 sys.stdout.flush() | |
297 | |
298 # useful when doing tests | |
299 if self.max_minibatches and minibatch_index >= self.max_minibatches: | |
300 break | |
301 | |
302 if decrease == 1: | |
303 learning_rate /= 2 #divide the learning rate by 2 for each new epoch | |
304 | |
305 self.series['params'].append((epoch,), self.classifier.all_params) | |
306 | |
307 if done_looping == True: #To exit completly the fine-tuning | |
308 break #to exit the WHILE loop | |
309 | |
310 end_time = time.clock() | |
311 self.hp.update({'finetuning_time':end_time-start_time,\ | |
312 'best_validation_error':best_validation_loss,\ | |
313 'test_score':test_score, | |
314 'num_finetuning_epochs':epoch}) | |
315 | |
316 print(('\nOptimization complete with best validation score of %f %%,' | |
317 'with test performance %f %% on dataset %s ') % | |
318 (best_validation_loss * 100., test_score*100.,nom_train)) | |
319 print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) | |
320 | |
321 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) | |
322 | |
323 sys.stdout.flush() | |
324 | |
325 #Save a copy of the parameters in a file to be able to get them in the future | |
326 | |
327 if special == 1: #To keep a track of the value of the parameters | |
328 f = open('params_finetune_stanford.txt', 'w') | |
329 pickle.dump(parameters_finetune,f) | |
330 f.close() | |
331 | |
332 elif ind_test == 0 | ind_test == 20: #To keep a track of the value of the parameters | |
333 f = open('params_finetune_P07.txt', 'w') | |
334 pickle.dump(parameters_finetune,f) | |
335 f.close() | |
336 | |
337 | |
338 elif ind_test== 1: #For the run with 2 finetunes. It will be faster. | |
339 f = open('params_finetune_NIST.txt', 'w') | |
340 pickle.dump(parameters_finetune,f) | |
341 f.close() | |
342 | |
343 elif ind_test== 21: #To keep a track of the value of the parameters | |
344 f = open('params_finetune_P07_then_NIST.txt', 'w') | |
345 pickle.dump(parameters_finetune,f) | |
346 f.close() | |
347 | |
348 | |
349 #Set parameters like they where right after pre-train or finetune | |
350 def reload_parameters(self,which): | |
351 | |
352 #self.parameters_pre=pickle.load('params_pretrain.txt') | |
353 f = open(which) | |
354 self.parameters_pre=pickle.load(f) | |
355 f.close() | |
356 for idx,x in enumerate(self.parameters_pre): | |
357 if x.dtype=='float64': | |
358 self.classifier.params[idx].value=theano._asarray(copy(x),dtype=theano.config.floatX) | |
359 else: | |
360 self.classifier.params[idx].value=copy(x) | |
361 | |
362 def training_error(self,dataset): | |
363 # create a function to compute the mistakes that are made by the model | |
364 # on the validation set, or testing set | |
365 test_model = \ | |
366 theano.function( | |
367 [self.classifier.x,self.classifier.y], self.classifier.errors) | |
368 | |
369 iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize) | |
370 train_losses2 = [test_model(x,y) for x,y in iter2] | |
371 train_score2 = numpy.mean(train_losses2) | |
372 print "Training error is: " + str(train_score2) | |
373 | |
374 | |
375 | |
376 |