comparison deep/stacked_dae/v_sylvain/sgd_optimization.py @ 230:8a94a5c808cd

Repertoire pour faire les tests avec les differents ensembles pour le finetuning
author SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
date Fri, 12 Mar 2010 16:47:10 -0500
parents
children 02ed13244133
comparison
equal deleted inserted replaced
229:02eb98d051fe 230:8a94a5c808cd
1 #!/usr/bin/python
2 # coding: utf-8
3
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial
5
6 import numpy
7 import theano
8 import time
9 import datetime
10 import theano.tensor as T
11 import sys
12
13 from jobman import DD
14 import jobman, jobman.sql
15
16 from stacked_dae import SdA
17
18 from ift6266.utils.seriestables import *
19
20 ##def shared_dataset(data_xy):
21 ## data_x, data_y = data_xy
22 ## if theano.config.device.startswith("gpu"):
23 ## print "TRANSFERING DATASETS (via shared()) TO GPU"
24 ## shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX))
25 ## shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX))
26 ## shared_y = T.cast(shared_y, 'int32')
27 ## else:
28 ## print "WILL RUN ON CPU, NOT GPU, SO DATASETS REMAIN IN BYTES"
29 ## shared_x = theano.shared(data_x)
30 ## shared_y = theano.shared(data_y)
31 ## return shared_x, shared_y
32
33 ######Les shared seront remplacees utilisant "given" dans les enonces de fonction plus loin
34 def shared_dataset(batch_size, n_in):
35
36 shared_x = theano.shared(numpy.asarray(numpy.zeros((batch_size,n_in)), dtype=theano.config.floatX))
37 shared_y = theano.shared(numpy.asarray(numpy.zeros(batch_size), dtype=theano.config.floatX))
38 return shared_x, shared_y
39
40 default_series = { \
41 'reconstruction_error' : DummySeries(),
42 'training_error' : DummySeries(),
43 'validation_error' : DummySeries(),
44 'test_error' : DummySeries(),
45 'params' : DummySeries()
46 }
47
48 class SdaSgdOptimizer:
49 def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0, series=default_series):
50 self.dataset = dataset
51 self.hp = hyperparameters
52 self.n_ins = n_ins
53 self.n_outs = n_outs
54 self.input_divider = input_divider
55
56 self.series = series
57
58 self.rng = numpy.random.RandomState(1234)
59
60 self.init_datasets()
61 self.init_classifier()
62
63 sys.stdout.flush()
64
65 def init_datasets(self):
66 print "init_datasets"
67 sys.stdout.flush()
68
69 #train_set, valid_set, test_set = self.dataset
70 self.test_set_x, self.test_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins)
71 self.valid_set_x, self.valid_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins)
72 self.train_set_x, self.train_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins)
73
74 # compute number of minibatches for training, validation and testing
75 self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size
76 self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size
77 # remove last batch in case it's incomplete
78 self.n_test_batches = (self.test_set_x.value.shape[0] / self.hp.minibatch_size) - 1
79
80 def init_classifier(self):
81 print "Constructing classifier"
82
83 # we don't want to save arrays in DD objects, so
84 # we recreate those arrays here
85 nhl = self.hp.num_hidden_layers
86 layers_sizes = [self.hp.hidden_layers_sizes] * nhl
87 corruption_levels = [self.hp.corruption_levels] * nhl
88
89 # construct the stacked denoising autoencoder class
90 self.classifier = SdA( \
91 train_set_x= self.train_set_x, \
92 train_set_y = self.train_set_y,\
93 batch_size = self.hp.minibatch_size, \
94 n_ins= self.n_ins, \
95 hidden_layers_sizes = layers_sizes, \
96 n_outs = self.n_outs, \
97 corruption_levels = corruption_levels,\
98 rng = self.rng,\
99 pretrain_lr = self.hp.pretraining_lr, \
100 finetune_lr = self.hp.finetuning_lr,\
101 input_divider = self.input_divider )
102
103 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
104
105 sys.stdout.flush()
106
107 def train(self):
108 self.pretrain()
109 self.finetune()
110
111 def pretrain(self):
112 print "STARTING PRETRAINING, time = ", datetime.datetime.now()
113 sys.stdout.flush()
114
115 start_time = time.clock()
116 ## Pre-train layer-wise
117 for i in xrange(self.classifier.n_layers):
118 # go through pretraining epochs
119 for epoch in xrange(self.hp.pretraining_epochs_per_layer):
120 # go through the training set
121 for batch_index in xrange(self.n_train_batches):
122 c = self.classifier.pretrain_functions[i](batch_index)
123
124 self.series["reconstruction_error"].append((epoch, batch_index), c)
125
126 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c
127 sys.stdout.flush()
128
129 self.series['params'].append((epoch,), self.classifier.all_params)
130
131 end_time = time.clock()
132
133 print ('Pretraining took %f minutes' %((end_time-start_time)/60.))
134 self.hp.update({'pretraining_time': end_time-start_time})
135
136 sys.stdout.flush()
137
138 def finetune(self):
139 print "STARTING FINETUNING, time = ", datetime.datetime.now()
140
141 index = T.lscalar() # index to a [mini]batch
142 minibatch_size = self.hp.minibatch_size
143
144 # create a function to compute the mistakes that are made by the model
145 # on the validation set, or testing set
146 shared_divider = theano.shared(numpy.asarray(self.input_divider, dtype=theano.config.floatX))
147 test_model = theano.function([index], self.classifier.errors,
148 givens = {
149 self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
150 self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]})
151
152 validate_model = theano.function([index], self.classifier.errors,
153 givens = {
154 self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
155 self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]})
156
157
158 # early-stopping parameters
159 patience = 10000 # look as this many examples regardless
160 patience_increase = 2. # wait this much longer when a new best is
161 # found
162 improvement_threshold = 0.995 # a relative improvement of this much is
163 # considered significant
164 validation_frequency = min(self.n_train_batches, patience/2)
165 # go through this many
166 # minibatche before checking the network
167 # on the validation set; in this case we
168 # check every epoch
169
170 best_params = None
171 best_validation_loss = float('inf')
172 test_score = 0.
173 start_time = time.clock()
174
175 done_looping = False
176 epoch = 0
177
178 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping):
179 epoch = epoch + 1
180 for minibatch_index in xrange(self.n_train_batches):
181
182 cost_ij = self.classifier.finetune(minibatch_index)
183 iter = epoch * self.n_train_batches + minibatch_index
184
185 self.series["training_error"].append((epoch, minibatch_index), cost_ij)
186
187 if (iter+1) % validation_frequency == 0:
188
189 validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)]
190 this_validation_loss = numpy.mean(validation_losses)
191
192 self.series["validation_error"].\
193 append((epoch, minibatch_index), this_validation_loss*100.)
194
195 print('epoch %i, minibatch %i/%i, validation error %f %%' % \
196 (epoch, minibatch_index+1, self.n_train_batches, \
197 this_validation_loss*100.))
198
199
200 # if we got the best validation score until now
201 if this_validation_loss < best_validation_loss:
202
203 #improve patience if loss improvement is good enough
204 if this_validation_loss < best_validation_loss * \
205 improvement_threshold :
206 patience = max(patience, iter * patience_increase)
207
208 # save best validation score and iteration number
209 best_validation_loss = this_validation_loss
210 best_iter = iter
211
212 # test it on the test set
213 test_losses = [test_model(i) for i in xrange(self.n_test_batches)]
214 test_score = numpy.mean(test_losses)
215
216 self.series["test_error"].\
217 append((epoch, minibatch_index), test_score*100.)
218
219 print((' epoch %i, minibatch %i/%i, test error of best '
220 'model %f %%') %
221 (epoch, minibatch_index+1, self.n_train_batches,
222 test_score*100.))
223
224 sys.stdout.flush()
225
226 self.series['params'].append((epoch,), self.classifier.all_params)
227
228 if patience <= iter :
229 done_looping = True
230 break
231
232 end_time = time.clock()
233 self.hp.update({'finetuning_time':end_time-start_time,\
234 'best_validation_error':best_validation_loss,\
235 'test_score':test_score,
236 'num_finetuning_epochs':epoch})
237
238 print(('Optimization complete with best validation score of %f %%,'
239 'with test performance %f %%') %
240 (best_validation_loss * 100., test_score*100.))
241 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))
242
243
244