Mercurial > ift6266
comparison deep/stacked_dae/v_sylvain/nist_sda.py @ 230:8a94a5c808cd
Repertoire pour faire les tests avec les differents ensembles pour le finetuning
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Fri, 12 Mar 2010 16:47:10 -0500 |
parents | |
children | c452e3a0a3b1 |
comparison
equal
deleted
inserted
replaced
229:02eb98d051fe | 230:8a94a5c808cd |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 import ift6266 | |
5 import pylearn | |
6 | |
7 import numpy | |
8 import theano | |
9 import time | |
10 | |
11 import pylearn.version | |
12 import theano.tensor as T | |
13 from theano.tensor.shared_randomstreams import RandomStreams | |
14 | |
15 import copy | |
16 import sys | |
17 import os | |
18 import os.path | |
19 | |
20 from jobman import DD | |
21 import jobman, jobman.sql | |
22 from pylearn.io import filetensor | |
23 | |
24 from ift6266 import datasets | |
25 | |
26 from utils import produit_cartesien_jobs | |
27 | |
28 from sgd_optimization import SdaSgdOptimizer | |
29 | |
30 #from ift6266.utils.scalar_series import * | |
31 from ift6266.utils.seriestables import * | |
32 import tables | |
33 | |
34 ############################################################################## | |
35 # GLOBALS | |
36 | |
37 TEST_CONFIG = False | |
38 | |
39 #NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' | |
40 JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/fsavard_sda_v2' | |
41 EXPERIMENT_PATH = "ift6266.deep.stacked_dae.v2.nist_sda.jobman_entrypoint" | |
42 | |
43 REDUCE_TRAIN_TO = None | |
44 MAX_FINETUNING_EPOCHS = 1000 | |
45 # number of minibatches before taking means for valid error etc. | |
46 REDUCE_EVERY = 100 | |
47 | |
48 if TEST_CONFIG: | |
49 REDUCE_TRAIN_TO = 1000 | |
50 MAX_FINETUNING_EPOCHS = 2 | |
51 REDUCE_EVERY = 10 | |
52 | |
53 # Possible values the hyperparameters can take. These are then | |
54 # combined with produit_cartesien_jobs so we get a list of all | |
55 # possible combinations, each one resulting in a job inserted | |
56 # in the jobman DB. | |
57 JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001], | |
58 'pretraining_epochs_per_layer': [10,20], | |
59 'hidden_layers_sizes': [300,800], | |
60 'corruption_levels': [0.1,0.2,0.3], | |
61 'minibatch_size': [20], | |
62 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], | |
63 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out | |
64 'num_hidden_layers':[2,3]} | |
65 | |
66 # Just useful for tests... minimal number of epochs | |
67 DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, | |
68 'pretraining_lr':0.1, | |
69 'pretraining_epochs_per_layer':2, | |
70 'max_finetuning_epochs':2, | |
71 'hidden_layers_sizes':800, | |
72 'corruption_levels':0.2, | |
73 'minibatch_size':20, | |
74 'reduce_train_to':10000, | |
75 'num_hidden_layers':1}) | |
76 | |
77 ''' | |
78 Function called by jobman upon launching each job | |
79 Its path is the one given when inserting jobs: see EXPERIMENT_PATH | |
80 ''' | |
81 def jobman_entrypoint(state, channel): | |
82 # record mercurial versions of each package | |
83 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) | |
84 # TODO: remove this, bad for number of simultaneous requests on DB | |
85 channel.save() | |
86 | |
87 workingdir = os.getcwd() | |
88 | |
89 ########### Il faudrait arranger ici pour train plus petit | |
90 | |
91 ## print "Will load NIST" | |
92 ## | |
93 ## nist = NIST(minibatch_size=20) | |
94 ## | |
95 ## print "NIST loaded" | |
96 ## | |
97 ## # For test runs, we don't want to use the whole dataset so | |
98 ## # reduce it to fewer elements if asked to. | |
99 ## rtt = None | |
100 ## if state.has_key('reduce_train_to'): | |
101 ## rtt = state['reduce_train_to'] | |
102 ## elif REDUCE_TRAIN_TO: | |
103 ## rtt = REDUCE_TRAIN_TO | |
104 ## | |
105 ## if rtt: | |
106 ## print "Reducing training set to "+str(rtt)+ " examples" | |
107 ## nist.reduce_train_set(rtt) | |
108 ## | |
109 ## train,valid,test = nist.get_tvt() | |
110 ## dataset = (train,valid,test) | |
111 | |
112 n_ins = 32*32 | |
113 n_outs = 62 # 10 digits, 26*2 (lower, capitals) | |
114 | |
115 series = create_series(state.num_hidden_layers) | |
116 | |
117 print "Creating optimizer with state, ", state | |
118 | |
119 optimizer = SdaSgdOptimizer(dataset=datasets.nist_all, hyperparameters=state, \ | |
120 n_ins=n_ins, n_outs=n_outs,\ | |
121 series=series) | |
122 | |
123 optimizer.pretrain() | |
124 channel.save() | |
125 | |
126 optimizer.finetune() | |
127 channel.save() | |
128 | |
129 return channel.COMPLETE | |
130 | |
131 # These Series objects are used to save various statistics | |
132 # during the training. | |
133 def create_series(num_hidden_layers): | |
134 | |
135 # Replace series we don't want to save with DummySeries, e.g. | |
136 # series['training_error'] = DummySeries() | |
137 | |
138 series = {} | |
139 | |
140 basedir = os.getcwd() | |
141 | |
142 h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") | |
143 | |
144 # reconstruction | |
145 reconstruction_base = \ | |
146 ErrorSeries(error_name="reconstruction_error", | |
147 table_name="reconstruction_error", | |
148 hdf5_file=h5f, | |
149 index_names=('epoch','minibatch'), | |
150 title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)") | |
151 series['reconstruction_error'] = \ | |
152 AccumulatorSeriesWrapper(base_series=reconstruction_base, | |
153 reduce_every=REDUCE_EVERY) | |
154 | |
155 # train | |
156 training_base = \ | |
157 ErrorSeries(error_name="training_error", | |
158 table_name="training_error", | |
159 hdf5_file=h5f, | |
160 index_names=('epoch','minibatch'), | |
161 title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)") | |
162 series['training_error'] = \ | |
163 AccumulatorSeriesWrapper(base_series=training_base, | |
164 reduce_every=REDUCE_EVERY) | |
165 | |
166 # valid and test are not accumulated/mean, saved directly | |
167 series['validation_error'] = \ | |
168 ErrorSeries(error_name="validation_error", | |
169 table_name="validation_error", | |
170 hdf5_file=h5f, | |
171 index_names=('epoch','minibatch')) | |
172 | |
173 series['test_error'] = \ | |
174 ErrorSeries(error_name="test_error", | |
175 table_name="test_error", | |
176 hdf5_file=h5f, | |
177 index_names=('epoch','minibatch')) | |
178 | |
179 param_names = [] | |
180 for i in range(num_hidden_layers): | |
181 param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i] | |
182 param_names += ['logreg_layer_W', 'logreg_layer_b'] | |
183 | |
184 # comment out series we don't want to save | |
185 series['params'] = SharedParamsStatisticsWrapper( | |
186 new_group_name="params", | |
187 base_group="/", | |
188 arrays_names=param_names, | |
189 hdf5_file=h5f, | |
190 index_names=('epoch',)) | |
191 | |
192 return series | |
193 | |
194 # Perform insertion into the Postgre DB based on combination | |
195 # of hyperparameter values above | |
196 # (see comment for produit_cartesien_jobs() to know how it works) | |
197 def jobman_insert_nist(): | |
198 jobs = produit_cartesien_jobs(JOB_VALS) | |
199 | |
200 db = jobman.sql.db(JOBDB) | |
201 for job in jobs: | |
202 job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) | |
203 jobman.sql.insert_dict(job, db) | |
204 | |
205 print "inserted" | |
206 | |
207 class NIST: | |
208 def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): | |
209 global NIST_ALL_LOCATION | |
210 | |
211 self.minibatch_size = minibatch_size | |
212 self.basepath = basepath and basepath or NIST_ALL_LOCATION | |
213 | |
214 self.set_filenames() | |
215 | |
216 # arrays of 2 elements: .x, .y | |
217 self.train = [None, None] | |
218 self.test = [None, None] | |
219 | |
220 self.load_train_test() | |
221 | |
222 self.valid = [[], []] | |
223 self.split_train_valid() | |
224 if reduce_train_to: | |
225 self.reduce_train_set(reduce_train_to) | |
226 | |
227 def get_tvt(self): | |
228 return self.train, self.valid, self.test | |
229 | |
230 def set_filenames(self): | |
231 self.train_files = ['all_train_data.ft', | |
232 'all_train_labels.ft'] | |
233 | |
234 self.test_files = ['all_test_data.ft', | |
235 'all_test_labels.ft'] | |
236 | |
237 def load_train_test(self): | |
238 self.load_data_labels(self.train_files, self.train) | |
239 self.load_data_labels(self.test_files, self.test) | |
240 | |
241 def load_data_labels(self, filenames, pair): | |
242 for i, fn in enumerate(filenames): | |
243 f = open(os.path.join(self.basepath, fn)) | |
244 pair[i] = filetensor.read(f) | |
245 f.close() | |
246 | |
247 def reduce_train_set(self, max): | |
248 self.train[0] = self.train[0][:max] | |
249 self.train[1] = self.train[1][:max] | |
250 | |
251 if max < len(self.test[0]): | |
252 for ar in (self.test, self.valid): | |
253 ar[0] = ar[0][:max] | |
254 ar[1] = ar[1][:max] | |
255 | |
256 def split_train_valid(self): | |
257 test_len = len(self.test[0]) | |
258 | |
259 new_train_x = self.train[0][:-test_len] | |
260 new_train_y = self.train[1][:-test_len] | |
261 | |
262 self.valid[0] = self.train[0][-test_len:] | |
263 self.valid[1] = self.train[1][-test_len:] | |
264 | |
265 self.train[0] = new_train_x | |
266 self.train[1] = new_train_y | |
267 | |
268 def test_load_nist(): | |
269 print "Will load NIST" | |
270 | |
271 import time | |
272 t1 = time.time() | |
273 nist = NIST(20) | |
274 t2 = time.time() | |
275 | |
276 print "NIST loaded. time delta = ", t2-t1 | |
277 | |
278 tr,v,te = nist.get_tvt() | |
279 | |
280 print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) | |
281 | |
282 raw_input("Press any key") | |
283 | |
284 if __name__ == '__main__': | |
285 | |
286 import sys | |
287 | |
288 args = sys.argv[1:] | |
289 | |
290 if len(args) > 0 and args[0] == 'load_nist': | |
291 test_load_nist() | |
292 | |
293 elif len(args) > 0 and args[0] == 'jobman_insert': | |
294 jobman_insert_nist() | |
295 | |
296 elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': | |
297 chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) | |
298 jobman_entrypoint(DEFAULT_HP_NIST, chanmock) | |
299 | |
300 else: | |
301 print "Bad arguments" | |
302 |