Mercurial > ift6266
comparison deep/stacked_dae/v_guillaume/stacked_dae.py @ 443:89a49dae6cf3
merge
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Mon, 03 May 2010 18:38:58 -0400 |
parents | 0ca069550abd |
children |
comparison
equal
deleted
inserted
replaced
442:d5b2b6397a5a | 443:89a49dae6cf3 |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 import numpy | |
5 import theano | |
6 import time | |
7 import theano.tensor as T | |
8 from theano.tensor.shared_randomstreams import RandomStreams | |
9 import copy | |
10 | |
11 from utils import update_locals | |
12 | |
13 # taken from LeDeepNet/daa.py | |
14 # has a special case when taking log(0) (defined =0) | |
15 # modified to not take the mean anymore | |
16 from theano.tensor.xlogx import xlogx, xlogy0 | |
17 # it's target*log(output) | |
18 def binary_cross_entropy(target, output, sum_axis=1): | |
19 XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output)) | |
20 return -T.sum(XE, axis=sum_axis) | |
21 | |
22 class LogisticRegression(object): | |
23 def __init__(self, input, n_in, n_out): | |
24 # initialize with 0 the weights W as a matrix of shape (n_in, n_out) | |
25 self.W = theano.shared( value=numpy.zeros((n_in,n_out), | |
26 dtype = theano.config.floatX) ) | |
27 # initialize the baises b as a vector of n_out 0s | |
28 self.b = theano.shared( value=numpy.zeros((n_out,), | |
29 dtype = theano.config.floatX) ) | |
30 # compute vector of class-membership. This is a sigmoid instead of | |
31 #a softmax to be able later to classify as nothing | |
32 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) #row-wise | |
33 ## self.p_y_given_x = T.nnet.sigmoid(T.dot(input, self.W)+self.b) | |
34 | |
35 # compute prediction as class whose probability is maximal in | |
36 # symbolic form | |
37 self.y_pred=T.argmax(self.p_y_given_x, axis=1) | |
38 | |
39 # list of parameters for this layer | |
40 self.params = [self.W, self.b] | |
41 | |
42 | |
43 def negative_log_likelihood(self, y): | |
44 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) | |
45 ## return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]+T.sum(T.log(1-self.p_y_given_x), axis=1)-T.log(1-self.p_y_given_x)[T.arange(y.shape[0]),y]) | |
46 | |
47 | |
48 ## def kullback_leibler(self,y): | |
49 ## return -T.mean(T.log(1/float(self.p_y_given_x))[T.arange(y.shape[0]),y]) | |
50 | |
51 | |
52 def errors(self, y): | |
53 # check if y has same dimension of y_pred | |
54 if y.ndim != self.y_pred.ndim: | |
55 raise TypeError('y should have the same shape as self.y_pred', | |
56 ('y', target.type, 'y_pred', self.y_pred.type)) | |
57 | |
58 # check if y is of the correct datatype | |
59 if y.dtype.startswith('int'): | |
60 # the T.neq operator returns a vector of 0s and 1s, where 1 | |
61 # represents a mistake in prediction | |
62 return T.mean(T.neq(self.y_pred, y)) | |
63 else: | |
64 raise NotImplementedError() | |
65 | |
66 | |
67 class SigmoidalLayer(object): | |
68 def __init__(self, rng, input, n_in, n_out): | |
69 self.input = input | |
70 | |
71 W_values = numpy.asarray( rng.uniform( \ | |
72 low = -numpy.sqrt(6./(n_in+n_out)), \ | |
73 high = numpy.sqrt(6./(n_in+n_out)), \ | |
74 size = (n_in, n_out)), dtype = theano.config.floatX) | |
75 self.W = theano.shared(value = W_values) | |
76 | |
77 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) | |
78 self.b = theano.shared(value= b_values) | |
79 | |
80 self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) | |
81 self.params = [self.W, self.b] | |
82 | |
83 | |
84 class TanhLayer(object): | |
85 def __init__(self, rng, input, n_in, n_out): | |
86 self.input = input | |
87 | |
88 W_values = numpy.asarray( rng.uniform( \ | |
89 low = -numpy.sqrt(6./(n_in+n_out)), \ | |
90 high = numpy.sqrt(6./(n_in+n_out)), \ | |
91 size = (n_in, n_out)), dtype = theano.config.floatX) | |
92 self.W = theano.shared(value = W_values) | |
93 | |
94 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) | |
95 self.b = theano.shared(value= b_values) | |
96 | |
97 self.output = (T.tanh(T.dot(input, self.W) + self.b) + 1.0)/2.0 | |
98 # ( *+ 1) /2 is because tanh goes from -1 to 1 and sigmoid goes from 0 to 1 | |
99 # I want to use tanh, but the image has to stay the same. The correction is necessary. | |
100 self.params = [self.W, self.b] | |
101 | |
102 | |
103 class dA(object): | |
104 def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ | |
105 input = None, shared_W = None, shared_b = None): | |
106 self.n_visible = n_visible | |
107 self.n_hidden = n_hidden | |
108 | |
109 # create a Theano random generator that gives symbolic random values | |
110 theano_rng = RandomStreams() | |
111 | |
112 if shared_W != None and shared_b != None : | |
113 self.W = shared_W | |
114 self.b = shared_b | |
115 else: | |
116 # initial values for weights and biases | |
117 # note : W' was written as `W_prime` and b' as `b_prime` | |
118 | |
119 # W is initialized with `initial_W` which is uniformely sampled | |
120 # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) | |
121 # the output of uniform if converted using asarray to dtype | |
122 # theano.config.floatX so that the code is runable on GPU | |
123 initial_W = numpy.asarray( numpy.random.uniform( \ | |
124 low = -numpy.sqrt(6./(n_hidden+n_visible)), \ | |
125 high = numpy.sqrt(6./(n_hidden+n_visible)), \ | |
126 size = (n_visible, n_hidden)), dtype = theano.config.floatX) | |
127 initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) | |
128 | |
129 | |
130 # theano shared variables for weights and biases | |
131 self.W = theano.shared(value = initial_W, name = "W") | |
132 self.b = theano.shared(value = initial_b, name = "b") | |
133 | |
134 | |
135 initial_b_prime= numpy.zeros(n_visible) | |
136 # tied weights, therefore W_prime is W transpose | |
137 self.W_prime = self.W.T | |
138 self.b_prime = theano.shared(value = initial_b_prime, name = "b'") | |
139 | |
140 # if no input is given, generate a variable representing the input | |
141 if input == None : | |
142 # we use a matrix because we expect a minibatch of several examples, | |
143 # each example being a row | |
144 self.x = T.matrix(name = 'input') | |
145 else: | |
146 self.x = input | |
147 # Equation (1) | |
148 # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs | |
149 # note : first argument of theano.rng.binomial is the shape(size) of | |
150 # random numbers that it should produce | |
151 # second argument is the number of trials | |
152 # third argument is the probability of success of any trial | |
153 # | |
154 # this will produce an array of 0s and 1s where 1 has a | |
155 # probability of 1 - ``corruption_level`` and 0 with | |
156 # ``corruption_level`` | |
157 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level, dtype=theano.config.floatX) * self.x | |
158 # Equation (2) | |
159 # note : y is stored as an attribute of the class so that it can be | |
160 # used later when stacking dAs. | |
161 | |
162 ## self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) | |
163 ## | |
164 ## # Equation (3) | |
165 ## #self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) | |
166 ## # Equation (4) | |
167 ## # note : we sum over the size of a datapoint; if we are using minibatches, | |
168 ## # L will be a vector, with one entry per example in minibatch | |
169 ## #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) | |
170 ## #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1) | |
171 ## | |
172 ## # bypassing z to avoid running to log(0) | |
173 ## z_a = T.dot(self.y, self.W_prime) + self.b_prime | |
174 ## log_sigmoid = T.log(1.) - T.log(1.+T.exp(-z_a)) | |
175 ## # log(1-sigmoid(z_a)) | |
176 ## log_1_sigmoid = -z_a - T.log(1.+T.exp(-z_a)) | |
177 ## self.L = -T.sum( self.x * (log_sigmoid) \ | |
178 ## + (1.0-self.x) * (log_1_sigmoid), axis=1 ) | |
179 | |
180 # I added this epsilon to avoid getting log(0) and 1/0 in grad | |
181 # This means conceptually that there'd be no probability of 0, but that | |
182 # doesn't seem to me as important (maybe I'm wrong?). | |
183 #eps = 0.00000001 | |
184 #eps_1 = 1-eps | |
185 #self.L = - T.sum( self.x * T.log(eps + eps_1*self.z) \ | |
186 # + (1-self.x)*T.log(eps + eps_1*(1-self.z)), axis=1 ) | |
187 # note : L is now a vector, where each element is the cross-entropy cost | |
188 # of the reconstruction of the corresponding example of the | |
189 # minibatch. We need to compute the average of all these to get | |
190 # the cost of the minibatch | |
191 | |
192 #Or use a Tanh everything is always between 0 and 1, the range is | |
193 #changed so it remain the same as when sigmoid is used | |
194 self.y = (T.tanh(T.dot(self.tilde_x, self.W ) + self.b)+1.0)/2.0 | |
195 | |
196 self.z = (T.tanh(T.dot(self.y, self.W_prime) + self.b_prime)+1.0) / 2.0 | |
197 #To ensure to do not have a log(0) operation | |
198 if self.z <= 0: | |
199 self.z = 0.000001 | |
200 if self.z >= 1: | |
201 self.z = 0.999999 | |
202 | |
203 self.L = - T.sum( self.x*T.log(self.z) + (1.0-self.x)*T.log(1.0-self.z), axis=1 ) | |
204 | |
205 self.cost = T.mean(self.L) | |
206 | |
207 self.params = [ self.W, self.b, self.b_prime ] | |
208 | |
209 | |
210 class SdA(object): | |
211 def __init__(self, batch_size, n_ins, | |
212 hidden_layers_sizes, n_outs, | |
213 corruption_levels, rng, pretrain_lr, finetune_lr): | |
214 # Just to make sure those are not modified somewhere else afterwards | |
215 hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes) | |
216 corruption_levels = copy.deepcopy(corruption_levels) | |
217 | |
218 update_locals(self, locals()) | |
219 | |
220 self.layers = [] | |
221 self.pretrain_functions = [] | |
222 self.params = [] | |
223 # MODIF: added this so we also get the b_primes | |
224 # (not used for finetuning... still using ".params") | |
225 self.all_params = [] | |
226 self.n_layers = len(hidden_layers_sizes) | |
227 self.logistic_params = [] | |
228 | |
229 print "Creating SdA with params:" | |
230 print "batch_size", batch_size | |
231 print "hidden_layers_sizes", hidden_layers_sizes | |
232 print "corruption_levels", corruption_levels | |
233 print "n_ins", n_ins | |
234 print "n_outs", n_outs | |
235 print "pretrain_lr", pretrain_lr | |
236 print "finetune_lr", finetune_lr | |
237 print "----" | |
238 | |
239 if len(hidden_layers_sizes) < 1 : | |
240 raiseException (' You must have at least one hidden layer ') | |
241 | |
242 | |
243 # allocate symbolic variables for the data | |
244 #index = T.lscalar() # index to a [mini]batch | |
245 self.x = T.matrix('x') # the data is presented as rasterized images | |
246 self.y = T.ivector('y') # the labels are presented as 1D vector of | |
247 # [int] labels | |
248 self.finetune_lr = T.fscalar('finetune_lr') #To get a dynamic finetune learning rate | |
249 self.pretrain_lr = T.fscalar('pretrain_lr') #To get a dynamic pretrain learning rate | |
250 | |
251 for i in xrange( self.n_layers ): | |
252 # construct the sigmoidal layer | |
253 | |
254 # the size of the input is either the number of hidden units of | |
255 # the layer below or the input size if we are on the first layer | |
256 if i == 0 : | |
257 input_size = n_ins | |
258 else: | |
259 input_size = hidden_layers_sizes[i-1] | |
260 | |
261 # the input to this layer is either the activation of the hidden | |
262 # layer below or the input of the SdA if you are on the first | |
263 # layer | |
264 if i == 0 : | |
265 layer_input = self.x | |
266 else: | |
267 layer_input = self.layers[-1].output | |
268 #We have to choose between sigmoidal layer or tanh layer ! | |
269 | |
270 ## layer = SigmoidalLayer(rng, layer_input, input_size, | |
271 ## hidden_layers_sizes[i] ) | |
272 | |
273 layer = TanhLayer(rng, layer_input, input_size, | |
274 hidden_layers_sizes[i] ) | |
275 # add the layer to the | |
276 self.layers += [layer] | |
277 self.params += layer.params | |
278 | |
279 # Construct a denoising autoencoder that shared weights with this | |
280 # layer | |
281 dA_layer = dA(input_size, hidden_layers_sizes[i], \ | |
282 corruption_level = corruption_levels[0],\ | |
283 input = layer_input, \ | |
284 shared_W = layer.W, shared_b = layer.b) | |
285 | |
286 self.all_params += dA_layer.params | |
287 | |
288 # Construct a function that trains this dA | |
289 # compute gradients of layer parameters | |
290 gparams = T.grad(dA_layer.cost, dA_layer.params) | |
291 # compute the list of updates | |
292 updates = {} | |
293 for param, gparam in zip(dA_layer.params, gparams): | |
294 updates[param] = param - gparam * self.pretrain_lr | |
295 | |
296 # create a function that trains the dA | |
297 update_fn = theano.function([self.x, self.pretrain_lr], dA_layer.cost, \ | |
298 updates = updates)#, | |
299 # givens = { | |
300 # self.x : ensemble}) | |
301 # collect this function into a list | |
302 #update_fn = theano.function([index], dA_layer.cost, \ | |
303 # updates = updates, | |
304 # givens = { | |
305 # self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider}) | |
306 # collect this function into a list | |
307 self.pretrain_functions += [update_fn] | |
308 | |
309 | |
310 # We now need to add a logistic layer on top of the SDA | |
311 self.logLayer = LogisticRegression(\ | |
312 input = self.layers[-1].output,\ | |
313 n_in = hidden_layers_sizes[-1], n_out = n_outs) | |
314 | |
315 self.params += self.logLayer.params | |
316 self.all_params += self.logLayer.params | |
317 # construct a function that implements one step of finetunining | |
318 | |
319 # compute the cost, defined as the negative log likelihood | |
320 cost = self.logLayer.negative_log_likelihood(self.y) | |
321 # compute the gradients with respect to the model parameters | |
322 gparams = T.grad(cost, self.params) | |
323 # compute list of updates | |
324 updates = {} | |
325 for param,gparam in zip(self.params, gparams): | |
326 updates[param] = param - gparam*self.finetune_lr | |
327 | |
328 self.finetune = theano.function([self.x,self.y,self.finetune_lr], cost, | |
329 updates = updates)#, | |
330 | |
331 # symbolic variable that points to the number of errors made on the | |
332 # minibatch given by self.x and self.y | |
333 | |
334 self.errors = self.logLayer.errors(self.y) | |
335 | |
336 | |
337 #STRUCTURE FOR THE FINETUNING OF THE LOGISTIC REGRESSION ON THE TOP WITH | |
338 #ALL HIDDEN LAYERS AS INPUT | |
339 | |
340 all_h=[] | |
341 for i in xrange(self.n_layers): | |
342 all_h.append(self.layers[i].output) | |
343 self.all_hidden=T.concatenate(all_h,axis=1) | |
344 | |
345 | |
346 self.logLayer2 = LogisticRegression(\ | |
347 input = self.all_hidden,\ | |
348 n_in = sum(hidden_layers_sizes), n_out = n_outs) | |
349 #n_in=hidden_layers_sizes[0],n_out=n_outs) | |
350 | |
351 #self.logistic_params+= self.logLayer2.params | |
352 # construct a function that implements one step of finetunining | |
353 | |
354 self.logistic_params+=self.logLayer2.params | |
355 # compute the cost, defined as the negative log likelihood | |
356 cost2 = self.logLayer2.negative_log_likelihood(self.y) | |
357 # compute the gradients with respect to the model parameters | |
358 gparams2 = T.grad(cost2, self.logistic_params) | |
359 | |
360 # compute list of updates | |
361 updates2 = {} | |
362 for param,gparam in zip(self.logistic_params, gparams2): | |
363 updates2[param] = param - gparam*finetune_lr | |
364 | |
365 self.finetune2 = theano.function([self.x,self.y], cost2, | |
366 updates = updates2) | |
367 | |
368 # symbolic variable that points to the number of errors made on the | |
369 # minibatch given by self.x and self.y | |
370 | |
371 self.errors2 = self.logLayer2.errors(self.y) | |
372 | |
373 | |
374 if __name__ == '__main__': | |
375 import sys | |
376 args = sys.argv[1:] | |
377 |