Mercurial > ift6266
comparison scripts/stacked_dae/sgd_optimization.py @ 139:7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
author | fsavard |
---|---|
date | Mon, 22 Feb 2010 13:38:25 -0500 |
parents | 5c79a2557f2f |
children |
comparison
equal
deleted
inserted
replaced
138:128507ac4edf | 139:7d8366fb90bf |
---|---|
1 #!/usr/bin/python | 1 #!/usr/bin/python |
2 # coding: utf-8 | 2 # coding: utf-8 |
3 | 3 |
4 # Generic SdA optimization loop, adapted slightly from the deeplearning.net tutorial | 4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial |
5 | 5 |
6 import numpy | 6 import numpy |
7 import theano | 7 import theano |
8 import time | 8 import time |
9 import theano.tensor as T | 9 import theano.tensor as T |
10 import copy | |
11 import sys | |
10 | 12 |
11 from jobman import DD | 13 from jobman import DD |
14 import jobman, jobman.sql | |
12 | 15 |
13 from stacked_dae import SdA | 16 from stacked_dae import SdA |
14 | 17 |
15 def sgd_optimization(dataset, hyperparameters, n_ins, n_outs): | 18 def shared_dataset(data_xy): |
16 hp = hyperparameters | 19 data_x, data_y = data_xy |
17 | 20 #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) |
18 printout_frequency = 1000 | 21 #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) |
19 | 22 #shared_y = T.cast(shared_y, 'int32') |
20 train_set, valid_set, test_set = dataset | 23 shared_x = theano.shared(data_x) |
21 | 24 shared_y = theano.shared(data_y) |
22 def shared_dataset(data_xy): | 25 return shared_x, shared_y |
23 data_x, data_y = data_xy | 26 |
24 shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) | 27 class SdaSgdOptimizer: |
25 shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) | 28 def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0,\ |
26 return shared_x, T.cast(shared_y, 'int32') | 29 job_tree=False, results_db=None,\ |
27 | 30 experiment="",\ |
28 test_set_x, test_set_y = shared_dataset(test_set) | 31 num_hidden_layers_to_try=[1,2,3], \ |
29 valid_set_x, valid_set_y = shared_dataset(valid_set) | 32 finetuning_lr_to_try=[0.1, 0.01, 0.001, 0.0001, 0.00001]): |
30 train_set_x, train_set_y = shared_dataset(train_set) | 33 |
31 | 34 self.dataset = dataset |
32 # compute number of minibatches for training, validation and testing | 35 self.hp = copy.copy(hyperparameters) |
33 n_train_batches = train_set_x.value.shape[0] / hp.minibatch_size | 36 self.n_ins = n_ins |
34 n_valid_batches = valid_set_x.value.shape[0] / hp.minibatch_size | 37 self.n_outs = n_outs |
35 n_test_batches = test_set_x.value.shape[0] / hp.minibatch_size | 38 self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) |
36 | 39 |
37 # allocate symbolic variables for the data | 40 self.job_tree = job_tree |
38 index = T.lscalar() # index to a [mini]batch | 41 self.results_db = results_db |
39 | 42 self.experiment = experiment |
40 # construct the stacked denoising autoencoder class | 43 if self.job_tree: |
41 classifier = SdA( train_set_x=train_set_x, train_set_y = train_set_y,\ | 44 assert(not results_db is None) |
42 batch_size = hp.minibatch_size, n_ins= n_ins, \ | 45 # these hp should not be there, so we insert default values |
43 hidden_layers_sizes = hp.hidden_layers_sizes, n_outs=10, \ | 46 # we use 3 hidden layers as we'll iterate through 1,2,3 |
44 corruption_levels = hp.corruption_levels,\ | 47 self.hp.finetuning_lr = 0.1 # dummy value, will be replaced anyway |
45 rng = numpy.random.RandomState(1234),\ | 48 cl = self.hp.corruption_levels |
46 pretrain_lr = hp.pretraining_lr, finetune_lr = hp.finetuning_lr ) | 49 nh = self.hp.hidden_layers_sizes |
47 | 50 self.hp.corruption_levels = [cl,cl,cl] |
48 printout_acc = 0.0 | 51 self.hp.hidden_layers_sizes = [nh,nh,nh] |
49 | 52 |
50 start_time = time.clock() | 53 self.num_hidden_layers_to_try = num_hidden_layers_to_try |
51 ## Pre-train layer-wise | 54 self.finetuning_lr_to_try = finetuning_lr_to_try |
52 for i in xrange(classifier.n_layers): | 55 |
53 # go through pretraining epochs | 56 self.printout_frequency = 1000 |
54 for epoch in xrange(hp.pretraining_epochs_per_layer): | 57 |
55 # go through the training set | 58 self.rng = numpy.random.RandomState(1234) |
56 for batch_index in xrange(n_train_batches): | 59 |
57 c = classifier.pretrain_functions[i](batch_index) | 60 self.init_datasets() |
58 | 61 self.init_classifier() |
59 print c | 62 |
60 | 63 def init_datasets(self): |
61 printout_acc += c / printout_frequency | 64 print "init_datasets" |
62 if (batch_index+1) % printout_frequency == 0: | 65 train_set, valid_set, test_set = self.dataset |
63 print batch_index, "reconstruction cost avg=", printout_acc | 66 self.test_set_x, self.test_set_y = shared_dataset(test_set) |
67 self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) | |
68 self.train_set_x, self.train_set_y = shared_dataset(train_set) | |
69 | |
70 # compute number of minibatches for training, validation and testing | |
71 self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size | |
72 self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size | |
73 self.n_test_batches = self.test_set_x.value.shape[0] / self.hp.minibatch_size | |
74 | |
75 def init_classifier(self): | |
76 print "Constructing classifier" | |
77 # construct the stacked denoising autoencoder class | |
78 self.classifier = SdA( \ | |
79 train_set_x= self.train_set_x, \ | |
80 train_set_y = self.train_set_y,\ | |
81 batch_size = self.hp.minibatch_size, \ | |
82 n_ins= self.n_ins, \ | |
83 hidden_layers_sizes = self.hp.hidden_layers_sizes, \ | |
84 n_outs = self.n_outs, \ | |
85 corruption_levels = self.hp.corruption_levels,\ | |
86 rng = self.rng,\ | |
87 pretrain_lr = self.hp.pretraining_lr, \ | |
88 finetune_lr = self.hp.finetuning_lr,\ | |
89 input_divider = self.input_divider ) | |
90 | |
91 def train(self): | |
92 self.pretrain() | |
93 if not self.job_tree: | |
94 # if job_tree is True, finetuning was already performed | |
95 self.finetune() | |
96 | |
97 def pretrain(self): | |
98 print "STARTING PRETRAINING" | |
99 | |
100 printout_acc = 0.0 | |
101 last_error = 0.0 | |
102 | |
103 start_time = time.clock() | |
104 ## Pre-train layer-wise | |
105 for i in xrange(self.classifier.n_layers): | |
106 # go through pretraining epochs | |
107 for epoch in xrange(self.hp.pretraining_epochs_per_layer): | |
108 # go through the training set | |
109 for batch_index in xrange(self.n_train_batches): | |
110 c = self.classifier.pretrain_functions[i](batch_index) | |
111 | |
112 printout_acc += c / self.printout_frequency | |
113 if (batch_index+1) % self.printout_frequency == 0: | |
114 print batch_index, "reconstruction cost avg=", printout_acc | |
115 last_error = printout_acc | |
116 printout_acc = 0.0 | |
117 | |
118 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c | |
119 | |
120 self.job_splitter(i+1, time.clock()-start_time, last_error) | |
121 | |
122 end_time = time.clock() | |
123 | |
124 print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) | |
125 | |
126 # Save time by reusing intermediate results | |
127 def job_splitter(self, current_pretraining_layer, pretraining_time, last_error): | |
128 | |
129 state_copy = None | |
130 original_classifier = None | |
131 | |
132 if self.job_tree and current_pretraining_layer in self.num_hidden_layers_to_try: | |
133 for lr in self.finetuning_lr_to_try: | |
134 sys.stdout.flush() | |
135 sys.stderr.flush() | |
136 | |
137 state_copy = copy.copy(self.hp) | |
138 | |
139 self.hp.update({'num_hidden_layers':current_pretraining_layer, \ | |
140 'finetuning_lr':lr,\ | |
141 'pretraining_time':pretraining_time,\ | |
142 'last_reconstruction_error':last_error}) | |
143 | |
144 original_classifier = self.classifier | |
145 print "ORIGINAL CLASSIFIER MEANS",original_classifier.get_params_means() | |
146 self.classifier = SdA.copy_reusing_lower_layers(original_classifier, current_pretraining_layer, new_finetuning_lr=lr) | |
147 | |
148 self.finetune() | |
149 | |
150 self.insert_finished_job() | |
151 | |
152 print "NEW CLASSIFIER MEANS AFTERWARDS",self.classifier.get_params_means() | |
153 print "ORIGINAL CLASSIFIER MEANS AFTERWARDS",original_classifier.get_params_means() | |
154 self.classifier = original_classifier | |
155 self.hp = state_copy | |
156 | |
157 def insert_finished_job(self): | |
158 job = copy.copy(self.hp) | |
159 job[jobman.sql.STATUS] = jobman.sql.DONE | |
160 job[jobman.sql.EXPERIMENT] = self.experiment | |
161 | |
162 # don,t try to store arrays in db | |
163 job['hidden_layers_sizes'] = job.hidden_layers_sizes[0] | |
164 job['corruption_levels'] = job.corruption_levels[0] | |
165 | |
166 print "Will insert finished job", job | |
167 jobman.sql.insert_dict(jobman.flatten(job), self.results_db) | |
168 | |
169 def finetune(self): | |
170 print "STARTING FINETUNING" | |
171 | |
172 index = T.lscalar() # index to a [mini]batch | |
173 minibatch_size = self.hp.minibatch_size | |
174 | |
175 # create a function to compute the mistakes that are made by the model | |
176 # on the validation set, or testing set | |
177 test_model = theano.function([index], self.classifier.errors, | |
178 givens = { | |
179 self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, | |
180 self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | |
181 | |
182 validate_model = theano.function([index], self.classifier.errors, | |
183 givens = { | |
184 self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, | |
185 self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | |
186 | |
187 | |
188 # early-stopping parameters | |
189 patience = 10000 # look as this many examples regardless | |
190 patience_increase = 2. # wait this much longer when a new best is | |
191 # found | |
192 improvement_threshold = 0.995 # a relative improvement of this much is | |
193 # considered significant | |
194 validation_frequency = min(self.n_train_batches, patience/2) | |
195 # go through this many | |
196 # minibatche before checking the network | |
197 # on the validation set; in this case we | |
198 # check every epoch | |
199 | |
200 best_params = None | |
201 best_validation_loss = float('inf') | |
202 test_score = 0. | |
203 start_time = time.clock() | |
204 | |
205 done_looping = False | |
206 epoch = 0 | |
207 | |
208 printout_acc = 0.0 | |
209 | |
210 if not self.hp.has_key('max_finetuning_epochs'): | |
211 self.hp.max_finetuning_epochs = 1000 | |
212 | |
213 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): | |
214 epoch = epoch + 1 | |
215 for minibatch_index in xrange(self.n_train_batches): | |
216 | |
217 cost_ij = self.classifier.finetune(minibatch_index) | |
218 iter = epoch * self.n_train_batches + minibatch_index | |
219 | |
220 printout_acc += cost_ij / float(self.printout_frequency * minibatch_size) | |
221 if (iter+1) % self.printout_frequency == 0: | |
222 print iter, "cost avg=", printout_acc | |
64 printout_acc = 0.0 | 223 printout_acc = 0.0 |
224 | |
225 if (iter+1) % validation_frequency == 0: | |
65 | 226 |
66 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c | 227 validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] |
67 | 228 this_validation_loss = numpy.mean(validation_losses) |
68 end_time = time.clock() | 229 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ |
69 | 230 (epoch, minibatch_index+1, self.n_train_batches, \ |
70 print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) | 231 this_validation_loss*100.)) |
71 # Fine-tune the entire model | 232 |
72 | 233 |
73 minibatch_size = hp.minibatch_size | 234 # if we got the best validation score until now |
74 | 235 if this_validation_loss < best_validation_loss: |
75 # create a function to compute the mistakes that are made by the model | 236 |
76 # on the validation set, or testing set | 237 #improve patience if loss improvement is good enough |
77 test_model = theano.function([index], classifier.errors, | 238 if this_validation_loss < best_validation_loss * \ |
78 givens = { | 239 improvement_threshold : |
79 classifier.x: test_set_x[index*minibatch_size:(index+1)*minibatch_size], | 240 patience = max(patience, iter * patience_increase) |
80 classifier.y: test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | 241 |
81 | 242 # save best validation score and iteration number |
82 validate_model = theano.function([index], classifier.errors, | 243 best_validation_loss = this_validation_loss |
83 givens = { | 244 best_iter = iter |
84 classifier.x: valid_set_x[index*minibatch_size:(index+1)*minibatch_size], | 245 |
85 classifier.y: valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | 246 # test it on the test set |
86 | 247 test_losses = [test_model(i) for i in xrange(self.n_test_batches)] |
87 | 248 test_score = numpy.mean(test_losses) |
88 # early-stopping parameters | 249 print((' epoch %i, minibatch %i/%i, test error of best ' |
89 patience = 10000 # look as this many examples regardless | 250 'model %f %%') % |
90 patience_increase = 2. # wait this much longer when a new best is | 251 (epoch, minibatch_index+1, self.n_train_batches, |
91 # found | 252 test_score*100.)) |
92 improvement_threshold = 0.995 # a relative improvement of this much is | 253 |
93 # considered significant | 254 |
94 validation_frequency = min(n_train_batches, patience/2) | 255 if patience <= iter : |
95 # go through this many | |
96 # minibatche before checking the network | |
97 # on the validation set; in this case we | |
98 # check every epoch | |
99 | |
100 best_params = None | |
101 best_validation_loss = float('inf') | |
102 test_score = 0. | |
103 start_time = time.clock() | |
104 | |
105 done_looping = False | |
106 epoch = 0 | |
107 | |
108 printout_acc = 0.0 | |
109 | |
110 print "----- START FINETUNING -----" | |
111 | |
112 while (epoch < hp.max_finetuning_epochs) and (not done_looping): | |
113 epoch = epoch + 1 | |
114 for minibatch_index in xrange(n_train_batches): | |
115 | |
116 cost_ij = classifier.finetune(minibatch_index) | |
117 iter = epoch * n_train_batches + minibatch_index | |
118 | |
119 printout_acc += cost_ij / float(printout_frequency * minibatch_size) | |
120 if (iter+1) % printout_frequency == 0: | |
121 print iter, "cost avg=", printout_acc | |
122 printout_acc = 0.0 | |
123 | |
124 if (iter+1) % validation_frequency == 0: | |
125 | |
126 validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] | |
127 this_validation_loss = numpy.mean(validation_losses) | |
128 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ | |
129 (epoch, minibatch_index+1, n_train_batches, \ | |
130 this_validation_loss*100.)) | |
131 | |
132 | |
133 # if we got the best validation score until now | |
134 if this_validation_loss < best_validation_loss: | |
135 | |
136 #improve patience if loss improvement is good enough | |
137 if this_validation_loss < best_validation_loss * \ | |
138 improvement_threshold : | |
139 patience = max(patience, iter * patience_increase) | |
140 | |
141 # save best validation score and iteration number | |
142 best_validation_loss = this_validation_loss | |
143 best_iter = iter | |
144 | |
145 # test it on the test set | |
146 test_losses = [test_model(i) for i in xrange(n_test_batches)] | |
147 test_score = numpy.mean(test_losses) | |
148 print((' epoch %i, minibatch %i/%i, test error of best ' | |
149 'model %f %%') % | |
150 (epoch, minibatch_index+1, n_train_batches, | |
151 test_score*100.)) | |
152 | |
153 | |
154 if patience <= iter : | |
155 done_looping = True | 256 done_looping = True |
156 break | 257 break |
157 | 258 |
158 end_time = time.clock() | 259 end_time = time.clock() |
159 print(('Optimization complete with best validation score of %f %%,' | 260 self.hp.update({'finetuning_time':end_time-start_time,\ |
160 'with test performance %f %%') % | 261 'best_validation_error':best_validation_loss,\ |
161 | 262 'test_score':test_score, |
162 (best_validation_loss * 100., test_score*100.)) | 263 'num_finetuning_epochs':epoch}) |
163 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) | 264 print(('Optimization complete with best validation score of %f %%,' |
164 | 265 'with test performance %f %%') % |
165 | 266 (best_validation_loss * 100., test_score*100.)) |
267 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) | |
268 | |
269 | |
270 |