Mercurial > ift6266
comparison baseline/log_reg/log_reg.py @ 199:777f48ba30df
Add MSE cost to log_reg.py
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Tue, 02 Mar 2010 18:43:54 -0500 |
parents | 5d88ed99c0af |
children | 7be1f086a89e |
comparison
equal
deleted
inserted
replaced
198:5d88ed99c0af | 199:777f48ba30df |
---|---|
110 # LP[T.arange(y.shape[0]),y] is a vector v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., LP[n-1,y[n-1]]] | 110 # LP[T.arange(y.shape[0]),y] is a vector v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., LP[n-1,y[n-1]]] |
111 # and T.mean(LP[T.arange(y.shape[0]),y]) is the mean (across minibatch examples) of the elements in v, | 111 # and T.mean(LP[T.arange(y.shape[0]),y]) is the mean (across minibatch examples) of the elements in v, |
112 # i.e., the mean log-likelihood across the minibatch. | 112 # i.e., the mean log-likelihood across the minibatch. |
113 return -T.mean( T.log( self.p_y_given_x )[ T.arange( y.shape[0] ), y ] ) | 113 return -T.mean( T.log( self.p_y_given_x )[ T.arange( y.shape[0] ), y ] ) |
114 | 114 |
115 def MSE(self, y): | |
116 return -T.mean(abs((self.p_t_given_x)[T.arange(y.shape[0]), y]-y)**2) | |
115 | 117 |
116 def errors( self, y ): | 118 def errors( self, y ): |
117 """Return a float representing the number of errors in the minibatch | 119 """Return a float representing the number of errors in the minibatch |
118 over the total number of examples of the minibatch ; zero one | 120 over the total number of examples of the minibatch ; zero one |
119 loss over the size of the minibatch | 121 loss over the size of the minibatch |