Mercurial > ift6266
comparison deep/stacked_dae/v_sylvain/nist_sda_retrieve.py @ 320:71ffe2c9bfad
finetune NIST+P07 change pour P07+NIST, les experiences n'ont pas ete concluentes
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Fri, 02 Apr 2010 14:53:46 -0400 |
parents | 067e747fd9c0 |
children | c61b72d07676 |
comparison
equal
deleted
inserted
replaced
319:7a12d2c3d06b | 320:71ffe2c9bfad |
---|---|
130 print('\n\n\tfinetune with P07\n\n') | 130 print('\n\n\tfinetune with P07\n\n') |
131 optimizer.reload_parameters(PATH+'params_pretrain.txt') | 131 optimizer.reload_parameters(PATH+'params_pretrain.txt') |
132 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) | 132 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) |
133 channel.save() | 133 channel.save() |
134 if finetune_choice == 2: | 134 if finetune_choice == 2: |
135 print('\n\n\tfinetune with NIST followed by P07\n\n') | 135 print('\n\n\tfinetune with P07 followed by NIST\n\n') |
136 optimizer.reload_parameters(PATH+'params_pretrain.txt') | 136 optimizer.reload_parameters(PATH+'params_pretrain.txt') |
137 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) | |
137 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) | 138 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) |
138 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) | |
139 channel.save() | 139 channel.save() |
140 if finetune_choice == 3: | 140 if finetune_choice == 3: |
141 print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ | 141 print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ |
142 All hidden units output are input of the logistic regression\n\n') | 142 All hidden units output are input of the logistic regression\n\n') |
143 optimizer.reload_parameters(PATH+'params_pretrain.txt') | 143 optimizer.reload_parameters(PATH+'params_pretrain.txt') |
154 print('\n\n\tfinetune with P07\n\n') | 154 print('\n\n\tfinetune with P07\n\n') |
155 sys.stdout.flush() | 155 sys.stdout.flush() |
156 optimizer.reload_parameters(PATH+'params_pretrain.txt') | 156 optimizer.reload_parameters(PATH+'params_pretrain.txt') |
157 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) | 157 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) |
158 channel.save() | 158 channel.save() |
159 print('\n\n\tfinetune with NIST (done earlier) followed by P07 (written here)\n\n') | 159 print('\n\n\tfinetune with P07 (done earlier) followed by NIST (written here)\n\n') |
160 sys.stdout.flush() | 160 sys.stdout.flush() |
161 optimizer.reload_parameters('params_finetune_NIST.txt') | 161 optimizer.reload_parameters('params_finetune_P07.txt') |
162 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) | 162 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) |
163 channel.save() | 163 channel.save() |
164 print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ | 164 print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ |
165 All hidden units output are input of the logistic regression\n\n') | 165 All hidden units output are input of the logistic regression\n\n') |
166 sys.stdout.flush() | 166 sys.stdout.flush() |
167 optimizer.reload_parameters(PATH+'params_pretrain.txt') | 167 optimizer.reload_parameters(PATH+'params_pretrain.txt') |