Mercurial > ift6266
comparison deep/autoencoder/DA_training.py @ 190:70a9df1cd20e
initial commit for autoencoder training
author | youssouf |
---|---|
date | Tue, 02 Mar 2010 09:52:27 -0500 |
parents | |
children | e12702b88a2d |
comparison
equal
deleted
inserted
replaced
189:0d0677773533 | 190:70a9df1cd20e |
---|---|
1 """ | |
2 This tutorial introduces stacked denoising auto-encoders (SdA) using Theano. | |
3 | |
4 Denoising autoencoders are the building blocks for SDAE. | |
5 They are based on auto-encoders as the ones used in Bengio et al. 2007. | |
6 An autoencoder takes an input x and first maps it to a hidden representation | |
7 y = f_{\theta}(x) = s(Wx+b), parameterized by \theta={W,b}. The resulting | |
8 latent representation y is then mapped back to a "reconstructed" vector | |
9 z \in [0,1]^d in input space z = g_{\theta'}(y) = s(W'y + b'). The weight | |
10 matrix W' can optionally be constrained such that W' = W^T, in which case | |
11 the autoencoder is said to have tied weights. The network is trained such | |
12 that to minimize the reconstruction error (the error between x and z). | |
13 | |
14 For the denosing autoencoder, during training, first x is corrupted into | |
15 \tilde{x}, where \tilde{x} is a partially destroyed version of x by means | |
16 of a stochastic mapping. Afterwards y is computed as before (using | |
17 \tilde{x}), y = s(W\tilde{x} + b) and z as s(W'y + b'). The reconstruction | |
18 error is now measured between z and the uncorrupted input x, which is | |
19 computed as the cross-entropy : | |
20 - \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)] | |
21 | |
22 For X iteration of the main program loop it takes *** minutes on an | |
23 Intel Core i7 and *** minutes on GPU (NVIDIA GTX 285 graphics processor). | |
24 | |
25 | |
26 References : | |
27 - P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol: Extracting and | |
28 Composing Robust Features with Denoising Autoencoders, ICML'08, 1096-1103, | |
29 2008 | |
30 - Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise | |
31 Training of Deep Networks, Advances in Neural Information Processing | |
32 Systems 19, 2007 | |
33 | |
34 """ | |
35 | |
36 import numpy | |
37 import theano | |
38 import time | |
39 import theano.tensor as T | |
40 from theano.tensor.shared_randomstreams import RandomStreams | |
41 | |
42 import gzip | |
43 import cPickle | |
44 | |
45 from pylearn.io import filetensor as ft | |
46 | |
47 class dA(): | |
48 """Denoising Auto-Encoder class (dA) | |
49 | |
50 A denoising autoencoders tries to reconstruct the input from a corrupted | |
51 version of it by projecting it first in a latent space and reprojecting | |
52 it afterwards back in the input space. Please refer to Vincent et al.,2008 | |
53 for more details. If x is the input then equation (1) computes a partially | |
54 destroyed version of x by means of a stochastic mapping q_D. Equation (2) | |
55 computes the projection of the input into the latent space. Equation (3) | |
56 computes the reconstruction of the input, while equation (4) computes the | |
57 reconstruction error. | |
58 | |
59 .. math:: | |
60 | |
61 \tilde{x} ~ q_D(\tilde{x}|x) (1) | |
62 | |
63 y = s(W \tilde{x} + b) (2) | |
64 | |
65 z = s(W' y + b') (3) | |
66 | |
67 L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)] (4) | |
68 | |
69 """ | |
70 | |
71 def __init__(self, n_visible= 784, n_hidden= 500, complexity = 0.1, input= None): | |
72 """ | |
73 Initialize the DAE class by specifying the number of visible units (the | |
74 dimension d of the input ), the number of hidden units ( the dimension | |
75 d' of the latent or hidden space ) and by giving a symbolic variable | |
76 for the input. Such a symbolic variable is useful when the input is | |
77 the result of some computations. For example when dealing with SDAEs, | |
78 the dA on layer 2 gets as input the output of the DAE on layer 1. | |
79 This output can be written as a function of the input to the entire | |
80 model, and as such can be computed by theano whenever needed. | |
81 | |
82 :param n_visible: number of visible units | |
83 | |
84 :param n_hidden: number of hidden units | |
85 | |
86 :param input: a symbolic description of the input or None | |
87 | |
88 """ | |
89 self.n_visible = n_visible | |
90 self.n_hidden = n_hidden | |
91 | |
92 # create a Theano random generator that gives symbolic random values | |
93 theano_rng = RandomStreams() | |
94 # create a numpy random generator | |
95 numpy_rng = numpy.random.RandomState() | |
96 | |
97 | |
98 # initial values for weights and biases | |
99 # note : W' was written as `W_prime` and b' as `b_prime` | |
100 | |
101 # W is initialized with `initial_W` which is uniformely sampled | |
102 # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) | |
103 # the output of uniform if converted using asarray to dtype | |
104 # theano.config.floatX so that the code is runable on GPU | |
105 initial_W = numpy.asarray( numpy.random.uniform( \ | |
106 low = -numpy.sqrt(6./(n_visible+n_hidden)), \ | |
107 high = numpy.sqrt(6./(n_visible+n_hidden)), \ | |
108 size = (n_visible, n_hidden)), dtype = theano.config.floatX) | |
109 initial_b = numpy.zeros(n_hidden) | |
110 | |
111 # W' is initialized with `initial_W_prime` which is uniformely sampled | |
112 # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) | |
113 # the output of uniform if converted using asarray to dtype | |
114 # theano.config.floatX so that the code is runable on GPU | |
115 initial_b_prime= numpy.zeros(n_visible) | |
116 | |
117 | |
118 # theano shared variables for weights and biases | |
119 self.W = theano.shared(value = initial_W, name = "W") | |
120 self.b = theano.shared(value = initial_b, name = "b") | |
121 # tied weights, therefore W_prime is W transpose | |
122 self.W_prime = self.W.T | |
123 self.b_prime = theano.shared(value = initial_b_prime, name = "b'") | |
124 | |
125 # if no input is given, generate a variable representing the input | |
126 if input == None : | |
127 # we use a matrix because we expect a minibatch of several examples, | |
128 # each example being a row | |
129 x = T.dmatrix(name = 'input') | |
130 else: | |
131 x = input | |
132 # Equation (1) | |
133 # note : first argument of theano.rng.binomial is the shape(size) of | |
134 # random numbers that it should produce | |
135 # second argument is the number of trials | |
136 # third argument is the probability of success of any trial | |
137 # | |
138 # this will produce an array of 0s and 1s where 1 has a | |
139 # probability of 0.9 and 0 of 0.1 | |
140 | |
141 tilde_x = theano_rng.binomial( x.shape, 1, 1-complexity) * x | |
142 # Equation (2) | |
143 # note : y is stored as an attribute of the class so that it can be | |
144 # used later when stacking dAs. | |
145 self.y = T.nnet.sigmoid(T.dot(tilde_x, self.W ) + self.b) | |
146 # Equation (3) | |
147 z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) | |
148 # Equation (4) | |
149 self.L = - T.sum( x*T.log(z) + (1-x)*T.log(1-z), axis=1 ) | |
150 # note : L is now a vector, where each element is the cross-entropy cost | |
151 # of the reconstruction of the corresponding example of the | |
152 # minibatch. We need to compute the average of all these to get | |
153 # the cost of the minibatch | |
154 self.cost = T.mean(self.L) | |
155 # note : y is computed from the corrupted `tilde_x`. Later on, | |
156 # we will need the hidden layer obtained from the uncorrupted | |
157 # input when for example we will pass this as input to the layer | |
158 # above | |
159 self.hidden_values = T.nnet.sigmoid( T.dot(x, self.W) + self.b) | |
160 | |
161 | |
162 | |
163 def sgd_optimization_nist( learning_rate=0.01, \ | |
164 n_iter = 300, n_code_layer = 400, \ | |
165 complexity = 0.1): | |
166 """ | |
167 Demonstrate stochastic gradient descent optimization for a denoising autoencoder | |
168 | |
169 This is demonstrated on MNIST. | |
170 | |
171 :param learning_rate: learning rate used (factor for the stochastic | |
172 gradient | |
173 | |
174 :param pretraining_epochs: number of epoch to do pretraining | |
175 | |
176 :param pretrain_lr: learning rate to be used during pre-training | |
177 | |
178 :param n_iter: maximal number of iterations ot run the optimizer | |
179 | |
180 """ | |
181 #open file to save the validation and test curve | |
182 filename = 'lr_' + str(learning_rate) + 'ni_' + str(n_iter) + 'nc_' + str(n_code_layer) + \ | |
183 'c_' + str(complexity) + '.txt' | |
184 | |
185 result_file = open(filename, 'w') | |
186 | |
187 | |
188 | |
189 data_path = '/data/lisa/data/nist/by_class/' | |
190 f = open(data_path+'all/all_train_data.ft') | |
191 g = open(data_path+'all/all_train_labels.ft') | |
192 h = open(data_path+'all/all_test_data.ft') | |
193 i = open(data_path+'all/all_test_labels.ft') | |
194 | |
195 train_set_x = ft.read(f) | |
196 train_set_y = ft.read(g) | |
197 test_set_x = ft.read(h) | |
198 test_set_y = ft.read(i) | |
199 | |
200 f.close() | |
201 g.close() | |
202 i.close() | |
203 h.close() | |
204 | |
205 # make minibatches of size 20 | |
206 batch_size = 20 # sized of the minibatch | |
207 | |
208 #create a validation set the same size as the test size | |
209 #use the end of the training array for this purpose | |
210 #discard the last remaining so we get a %batch_size number | |
211 test_size=len(test_set_y) | |
212 test_size = int(test_size/batch_size) | |
213 test_size*=batch_size | |
214 train_size = len(train_set_x) | |
215 train_size = int(train_size/batch_size) | |
216 train_size*=batch_size | |
217 validation_size =test_size | |
218 offset = train_size-test_size | |
219 if True: | |
220 print 'train size = %d' %train_size | |
221 print 'test size = %d' %test_size | |
222 print 'valid size = %d' %validation_size | |
223 print 'offset = %d' %offset | |
224 | |
225 | |
226 #train_set = (train_set_x,train_set_y) | |
227 train_batches = [] | |
228 for i in xrange(0, train_size-test_size, batch_size): | |
229 train_batches = train_batches + \ | |
230 [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] | |
231 | |
232 test_batches = [] | |
233 for i in xrange(0, test_size, batch_size): | |
234 test_batches = test_batches + \ | |
235 [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] | |
236 | |
237 valid_batches = [] | |
238 for i in xrange(0, test_size, batch_size): | |
239 valid_batches = valid_batches + \ | |
240 [(train_set_x[offset+i:offset+i+batch_size], \ | |
241 train_set_y[offset+i:offset+i+batch_size])] | |
242 | |
243 | |
244 ishape = (32,32) # this is the size of NIST images | |
245 | |
246 # allocate symbolic variables for the data | |
247 x = T.fmatrix() # the data is presented as rasterized images | |
248 y = T.lvector() # the labels are presented as 1D vector of | |
249 # [long int] labels | |
250 | |
251 # construct the denoising autoencoder class | |
252 n_ins = 32*32 | |
253 encoder = dA(n_ins, n_code_layer, input = x.reshape((batch_size,n_ins))) | |
254 | |
255 # Train autoencoder | |
256 | |
257 # compute gradients of the layer parameters | |
258 gW = T.grad(encoder.cost, encoder.W) | |
259 gb = T.grad(encoder.cost, encoder.b) | |
260 gb_prime = T.grad(encoder.cost, encoder.b_prime) | |
261 # compute the updated value of the parameters after one step | |
262 updated_W = encoder.W - gW * learning_rate | |
263 updated_b = encoder.b - gb * learning_rate | |
264 updated_b_prime = encoder.b_prime - gb_prime * learning_rate | |
265 | |
266 # defining the function that evaluate the symbolic description of | |
267 # one update step | |
268 train_model = theano.function([x], encoder.cost, updates=\ | |
269 { encoder.W : updated_W, \ | |
270 encoder.b : updated_b, \ | |
271 encoder.b_prime : updated_b_prime } ) | |
272 | |
273 | |
274 | |
275 | |
276 # compiling a theano function that computes the mistakes that are made | |
277 # by the model on a minibatch | |
278 test_model = theano.function([x], encoder.cost) | |
279 | |
280 normalize = numpy.asarray(255, dtype=theano.config.floatX) | |
281 | |
282 | |
283 n_minibatches = len(train_batches) | |
284 | |
285 # early-stopping parameters | |
286 patience = 10000000 / batch_size # look as this many examples regardless | |
287 patience_increase = 2 # wait this much longer when a new best is | |
288 # found | |
289 improvement_threshold = 0.995 # a relative improvement of this much is | |
290 # considered significant | |
291 validation_frequency = n_minibatches # go through this many | |
292 # minibatche before checking the network | |
293 # on the validation set; in this case we | |
294 # check every epoch | |
295 | |
296 | |
297 best_params = None | |
298 best_validation_loss = float('inf') | |
299 best_iter = 0 | |
300 test_score = 0. | |
301 start_time = time.clock() | |
302 # have a maximum of `n_iter` iterations through the entire dataset | |
303 for iter in xrange(n_iter* n_minibatches): | |
304 | |
305 # get epoch and minibatch index | |
306 epoch = iter / n_minibatches | |
307 minibatch_index = iter % n_minibatches | |
308 | |
309 # get the minibatches corresponding to `iter` modulo | |
310 # `len(train_batches)` | |
311 x,y = train_batches[ minibatch_index ] | |
312 ''' | |
313 if iter == 0: | |
314 b = numpy.asarray(255, dtype=theano.config.floatX) | |
315 x = x / b | |
316 print x | |
317 print y | |
318 print x.__class__ | |
319 print x.shape | |
320 print x.dtype.name | |
321 print y.dtype.name | |
322 print x.min(), x.max() | |
323 ''' | |
324 | |
325 cost_ij = train_model(x/normalize) | |
326 | |
327 if (iter+1) % validation_frequency == 0: | |
328 # compute zero-one loss on validation set | |
329 this_validation_loss = 0. | |
330 for x,y in valid_batches: | |
331 # sum up the errors for each minibatch | |
332 this_validation_loss += test_model(x/normalize) | |
333 # get the average by dividing with the number of minibatches | |
334 this_validation_loss /= len(valid_batches) | |
335 | |
336 print('epoch %i, minibatch %i/%i, validation error %f ' % \ | |
337 (epoch, minibatch_index+1, n_minibatches, \ | |
338 this_validation_loss)) | |
339 | |
340 # save value in file | |
341 result_file.write(str(epoch) + ' ' + str(this_validation_loss)+ '\n') | |
342 | |
343 | |
344 # if we got the best validation score until now | |
345 if this_validation_loss < best_validation_loss: | |
346 | |
347 #improve patience if loss improvement is good enough | |
348 if this_validation_loss < best_validation_loss * \ | |
349 improvement_threshold : | |
350 patience = max(patience, iter * patience_increase) | |
351 | |
352 best_validation_loss = this_validation_loss | |
353 best_iter = iter | |
354 # test it on the test set | |
355 | |
356 test_score = 0. | |
357 for x,y in test_batches: | |
358 test_score += test_model(x/normalize) | |
359 test_score /= len(test_batches) | |
360 print((' epoch %i, minibatch %i/%i, test error of best ' | |
361 'model %f ') % | |
362 (epoch, minibatch_index+1, n_minibatches, | |
363 test_score)) | |
364 | |
365 if patience <= iter : | |
366 print('iter (%i) is superior than patience(%i). break', iter, patience) | |
367 break | |
368 | |
369 | |
370 | |
371 end_time = time.clock() | |
372 print(('Optimization complete with best validation score of %f ,' | |
373 'with test performance %f ') % | |
374 (best_validation_loss, test_score)) | |
375 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) | |
376 | |
377 | |
378 result_file.close() | |
379 | |
380 return (best_validation_loss, test_score, (end_time-start_time)/60, best_iter) | |
381 | |
382 def sgd_optimization_mnist( learning_rate=0.01, \ | |
383 n_iter = 1, n_code_layer = 400, \ | |
384 complexity = 0.1): | |
385 """ | |
386 Demonstrate stochastic gradient descent optimization for a denoising autoencoder | |
387 | |
388 This is demonstrated on MNIST. | |
389 | |
390 :param learning_rate: learning rate used (factor for the stochastic | |
391 gradient | |
392 | |
393 :param pretraining_epochs: number of epoch to do pretraining | |
394 | |
395 :param pretrain_lr: learning rate to be used during pre-training | |
396 | |
397 :param n_iter: maximal number of iterations ot run the optimizer | |
398 | |
399 """ | |
400 #open file to save the validation and test curve | |
401 filename = 'lr_' + str(learning_rate) + 'ni_' + str(n_iter) + 'nc_' + str(n_code_layer) + \ | |
402 'c_' + str(complexity) + '.txt' | |
403 | |
404 result_file = open(filename, 'w') | |
405 | |
406 # Load the dataset | |
407 f = gzip.open('/u/lisa/HTML/deep/data/mnist/mnist.pkl.gz','rb') | |
408 train_set, valid_set, test_set = cPickle.load(f) | |
409 f.close() | |
410 | |
411 # make minibatches of size 20 | |
412 batch_size = 20 # sized of the minibatch | |
413 | |
414 # Dealing with the training set | |
415 # get the list of training images (x) and their labels (y) | |
416 (train_set_x, train_set_y) = train_set | |
417 # initialize the list of training minibatches with empty list | |
418 train_batches = [] | |
419 for i in xrange(0, len(train_set_x), batch_size): | |
420 # add to the list of minibatches the minibatch starting at | |
421 # position i, ending at position i+batch_size | |
422 # a minibatch is a pair ; the first element of the pair is a list | |
423 # of datapoints, the second element is the list of corresponding | |
424 # labels | |
425 train_batches = train_batches + \ | |
426 [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] | |
427 | |
428 # Dealing with the validation set | |
429 (valid_set_x, valid_set_y) = valid_set | |
430 # initialize the list of validation minibatches | |
431 valid_batches = [] | |
432 for i in xrange(0, len(valid_set_x), batch_size): | |
433 valid_batches = valid_batches + \ | |
434 [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] | |
435 | |
436 # Dealing with the testing set | |
437 (test_set_x, test_set_y) = test_set | |
438 # initialize the list of testing minibatches | |
439 test_batches = [] | |
440 for i in xrange(0, len(test_set_x), batch_size): | |
441 test_batches = test_batches + \ | |
442 [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] | |
443 | |
444 | |
445 ishape = (28,28) # this is the size of MNIST images | |
446 | |
447 # allocate symbolic variables for the data | |
448 x = T.fmatrix() # the data is presented as rasterized images | |
449 y = T.lvector() # the labels are presented as 1D vector of | |
450 # [long int] labels | |
451 | |
452 # construct the denoising autoencoder class | |
453 n_ins = 28*28 | |
454 encoder = dA(n_ins, n_code_layer, input = x.reshape((batch_size,n_ins))) | |
455 | |
456 # Train autoencoder | |
457 | |
458 # compute gradients of the layer parameters | |
459 gW = T.grad(encoder.cost, encoder.W) | |
460 gb = T.grad(encoder.cost, encoder.b) | |
461 gb_prime = T.grad(encoder.cost, encoder.b_prime) | |
462 # compute the updated value of the parameters after one step | |
463 updated_W = encoder.W - gW * learning_rate | |
464 updated_b = encoder.b - gb * learning_rate | |
465 updated_b_prime = encoder.b_prime - gb_prime * learning_rate | |
466 | |
467 # defining the function that evaluate the symbolic description of | |
468 # one update step | |
469 train_model = theano.function([x], encoder.cost, updates=\ | |
470 { encoder.W : updated_W, \ | |
471 encoder.b : updated_b, \ | |
472 encoder.b_prime : updated_b_prime } ) | |
473 | |
474 | |
475 | |
476 | |
477 # compiling a theano function that computes the mistakes that are made | |
478 # by the model on a minibatch | |
479 test_model = theano.function([x], encoder.cost) | |
480 | |
481 | |
482 | |
483 | |
484 n_minibatches = len(train_batches) | |
485 | |
486 # early-stopping parameters | |
487 patience = 10000# look as this many examples regardless | |
488 patience_increase = 2 # wait this much longer when a new best is | |
489 # found | |
490 improvement_threshold = 0.995 # a relative improvement of this much is | |
491 # considered significant | |
492 validation_frequency = n_minibatches # go through this many | |
493 # minibatche before checking the network | |
494 # on the validation set; in this case we | |
495 # check every epoch | |
496 | |
497 | |
498 best_params = None | |
499 best_validation_loss = float('inf') | |
500 best_iter = 0 | |
501 test_score = 0. | |
502 start_time = time.clock() | |
503 # have a maximum of `n_iter` iterations through the entire dataset | |
504 for iter in xrange(n_iter* n_minibatches): | |
505 | |
506 # get epoch and minibatch index | |
507 epoch = iter / n_minibatches | |
508 minibatch_index = iter % n_minibatches | |
509 | |
510 # get the minibatches corresponding to `iter` modulo | |
511 # `len(train_batches)` | |
512 x,y = train_batches[ minibatch_index ] | |
513 cost_ij = train_model(x) | |
514 | |
515 if (iter+1) % validation_frequency == 0: | |
516 # compute zero-one loss on validation set | |
517 this_validation_loss = 0. | |
518 for x,y in valid_batches: | |
519 # sum up the errors for each minibatch | |
520 this_validation_loss += test_model(x) | |
521 # get the average by dividing with the number of minibatches | |
522 this_validation_loss /= len(valid_batches) | |
523 | |
524 print('epoch %i, minibatch %i/%i, validation error %f ' % \ | |
525 (epoch, minibatch_index+1, n_minibatches, \ | |
526 this_validation_loss)) | |
527 | |
528 # save value in file | |
529 result_file.write(str(epoch) + ' ' + str(this_validation_loss)+ '\n') | |
530 | |
531 | |
532 # if we got the best validation score until now | |
533 if this_validation_loss < best_validation_loss: | |
534 | |
535 #improve patience if loss improvement is good enough | |
536 if this_validation_loss < best_validation_loss * \ | |
537 improvement_threshold : | |
538 patience = max(patience, iter * patience_increase) | |
539 | |
540 best_validation_loss = this_validation_loss | |
541 best_iter = iter | |
542 # test it on the test set | |
543 | |
544 test_score = 0. | |
545 for x,y in test_batches: | |
546 test_score += test_model(x) | |
547 test_score /= len(test_batches) | |
548 print((' epoch %i, minibatch %i/%i, test error of best ' | |
549 'model %f ') % | |
550 (epoch, minibatch_index+1, n_minibatches, | |
551 test_score)) | |
552 | |
553 if patience <= iter : | |
554 print('iter (%i) is superior than patience(%i). break', iter, patience) | |
555 break | |
556 | |
557 | |
558 end_time = time.clock() | |
559 print(('Optimization complete with best validation score of %f ,' | |
560 'with test performance %f ') % | |
561 (best_validation_loss, test_score)) | |
562 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) | |
563 | |
564 | |
565 result_file.close() | |
566 | |
567 return (best_validation_loss, test_score, (end_time-start_time)/60, best_iter) | |
568 | |
569 | |
570 def experiment(state,channel): | |
571 | |
572 (best_validation_loss, test_score, minutes_trained, iter) = \ | |
573 sgd_optimization_mnist(state.learning_rate, state.n_iter, state.n_code_layer, | |
574 state.complexity) | |
575 | |
576 state.best_validation_loss = best_validation_loss | |
577 state.test_score = test_score | |
578 state.minutes_trained = minutes_trained | |
579 state.iter = iter | |
580 | |
581 return channel.COMPLETE | |
582 | |
583 def experiment_nist(state,channel): | |
584 | |
585 (best_validation_loss, test_score, minutes_trained, iter) = \ | |
586 sgd_optimization_nist(state.learning_rate, state.n_iter, state.n_code_layer, | |
587 state.complexity) | |
588 | |
589 state.best_validation_loss = best_validation_loss | |
590 state.test_score = test_score | |
591 state.minutes_trained = minutes_trained | |
592 state.iter = iter | |
593 | |
594 return channel.COMPLETE | |
595 | |
596 | |
597 if __name__ == '__main__': | |
598 | |
599 sgd_optimization_nist() | |
600 | |
601 |