Mercurial > ift6266
comparison baseline/mlp/mlp_nist.py @ 378:60a4432b8071
added initial model for weights in jobman
author | xaviermuller |
---|---|
date | Mon, 26 Apr 2010 14:39:03 -0400 |
parents | 76b7182dd32e |
children | 1509b9bba4cc |
comparison
equal
deleted
inserted
replaced
377:0b7e64e8e93f | 378:60a4432b8071 |
---|---|
264 learning_rate_list=[] | 264 learning_rate_list=[] |
265 best_training_error=float('inf'); | 265 best_training_error=float('inf'); |
266 divergence_flag_list=[] | 266 divergence_flag_list=[] |
267 | 267 |
268 if data_set==0: | 268 if data_set==0: |
269 print 'using nist' | |
269 dataset=datasets.nist_all() | 270 dataset=datasets.nist_all() |
270 elif data_set==1: | 271 elif data_set==1: |
272 print 'using p07' | |
271 dataset=datasets.nist_P07() | 273 dataset=datasets.nist_P07() |
272 elif data_set==2: | 274 elif data_set==2: |
275 print 'using pnist' | |
273 dataset=datasets.PNIST07() | 276 dataset=datasets.PNIST07() |
274 | 277 |
275 | 278 |
276 | 279 |
277 | 280 |
292 | 295 |
293 | 296 |
294 # check if we want to initialise the weights with a previously calculated model | 297 # check if we want to initialise the weights with a previously calculated model |
295 # dimensions must be consistent between old model and current configuration!!!!!! (nb_hidden and nb_targets) | 298 # dimensions must be consistent between old model and current configuration!!!!!! (nb_hidden and nb_targets) |
296 if init_model!=0: | 299 if init_model!=0: |
300 print 'using old model' | |
301 print init_model | |
297 old_model=numpy.load(init_model) | 302 old_model=numpy.load(init_model) |
298 classifier.W1.value=old_model['W1'] | 303 classifier.W1.value=old_model['W1'] |
299 classifier.W2.value=old_model['W2'] | 304 classifier.W2.value=old_model['W2'] |
300 classifier.b1.value=old_model['b1'] | 305 classifier.b1.value=old_model['b1'] |
301 classifier.b2.value=old_model['b2'] | 306 classifier.b2.value=old_model['b2'] |
524 adaptive_lr=state.adaptive_lr,\ | 529 adaptive_lr=state.adaptive_lr,\ |
525 tau=state.tau,\ | 530 tau=state.tau,\ |
526 verbose = state.verbose,\ | 531 verbose = state.verbose,\ |
527 lr_t2_factor=state.lr_t2_factor, | 532 lr_t2_factor=state.lr_t2_factor, |
528 data_set=state.data_set, | 533 data_set=state.data_set, |
534 init_model=state.init_model, | |
529 channel=channel) | 535 channel=channel) |
530 state.train_error=train_error | 536 state.train_error=train_error |
531 state.validation_error=validation_error | 537 state.validation_error=validation_error |
532 state.test_error=test_error | 538 state.test_error=test_error |
533 state.nb_exemples=nb_exemples | 539 state.nb_exemples=nb_exemples |