Mercurial > ift6266
comparison code_tutoriel/utils.py @ 165:4bc5eeec6394
Updating the tutorial code to the latest revisions.
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 13:55:27 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
164:e3de934a98b6 | 165:4bc5eeec6394 |
---|---|
1 """ This file contains different utility functions that are not connected | |
2 in anyway to the networks presented in the tutorials, but rather help in | |
3 processing the outputs into a more understandable way. | |
4 | |
5 For example ``tile_raster_images`` helps in generating a easy to grasp | |
6 image from a set of samples or weights. | |
7 """ | |
8 | |
9 | |
10 import numpy | |
11 | |
12 | |
13 def scale_to_unit_interval(ndar,eps=1e-8): | |
14 """ Scales all values in the ndarray ndar to be between 0 and 1 """ | |
15 ndar = ndar.copy() | |
16 ndar -= ndar.min() | |
17 ndar *= 1.0 / (ndar.max()+eps) | |
18 return ndar | |
19 | |
20 | |
21 def tile_raster_images(X, img_shape, tile_shape,tile_spacing = (0,0), | |
22 scale_rows_to_unit_interval = True, output_pixel_vals = True): | |
23 """ | |
24 Transform an array with one flattened image per row, into an array in | |
25 which images are reshaped and layed out like tiles on a floor. | |
26 | |
27 This function is useful for visualizing datasets whose rows are images, | |
28 and also columns of matrices for transforming those rows | |
29 (such as the first layer of a neural net). | |
30 | |
31 :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can | |
32 be 2-D ndarrays or None; | |
33 :param X: a 2-D array in which every row is a flattened image. | |
34 | |
35 :type img_shape: tuple; (height, width) | |
36 :param img_shape: the original shape of each image | |
37 | |
38 :type tile_shape: tuple; (rows, cols) | |
39 :param tile_shape: the number of images to tile (rows, cols) | |
40 | |
41 :param output_pixel_vals: if output should be pixel values (i.e. int8 | |
42 values) or floats | |
43 | |
44 :param scale_rows_to_unit_interval: if the values need to be scaled before | |
45 being plotted to [0,1] or not | |
46 | |
47 | |
48 :returns: array suitable for viewing as an image. | |
49 (See:`PIL.Image.fromarray`.) | |
50 :rtype: a 2-d array with same dtype as X. | |
51 | |
52 """ | |
53 | |
54 assert len(img_shape) == 2 | |
55 assert len(tile_shape) == 2 | |
56 assert len(tile_spacing) == 2 | |
57 | |
58 # The expression below can be re-written in a more C style as | |
59 # follows : | |
60 # | |
61 # out_shape = [0,0] | |
62 # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] - | |
63 # tile_spacing[0] | |
64 # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] - | |
65 # tile_spacing[1] | |
66 out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp | |
67 in zip(img_shape, tile_shape, tile_spacing)] | |
68 | |
69 if isinstance(X, tuple): | |
70 assert len(X) == 4 | |
71 # Create an output numpy ndarray to store the image | |
72 if output_pixel_vals: | |
73 out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') | |
74 else: | |
75 out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) | |
76 | |
77 #colors default to 0, alpha defaults to 1 (opaque) | |
78 if output_pixel_vals: | |
79 channel_defaults = [0,0,0,255] | |
80 else: | |
81 channel_defaults = [0.,0.,0.,1.] | |
82 | |
83 for i in xrange(4): | |
84 if X[i] is None: | |
85 # if channel is None, fill it with zeros of the correct | |
86 # dtype | |
87 out_array[:,:,i] = numpy.zeros(out_shape, | |
88 dtype='uint8' if output_pixel_vals else out_array.dtype | |
89 )+channel_defaults[i] | |
90 else: | |
91 # use a recurrent call to compute the channel and store it | |
92 # in the output | |
93 out_array[:,:,i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) | |
94 return out_array | |
95 | |
96 else: | |
97 # if we are dealing with only one channel | |
98 H, W = img_shape | |
99 Hs, Ws = tile_spacing | |
100 | |
101 # generate a matrix to store the output | |
102 out_array = numpy.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype) | |
103 | |
104 | |
105 for tile_row in xrange(tile_shape[0]): | |
106 for tile_col in xrange(tile_shape[1]): | |
107 if tile_row * tile_shape[1] + tile_col < X.shape[0]: | |
108 if scale_rows_to_unit_interval: | |
109 # if we should scale values to be between 0 and 1 | |
110 # do this by calling the `scale_to_unit_interval` | |
111 # function | |
112 this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)) | |
113 else: | |
114 this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) | |
115 # add the slice to the corresponding position in the | |
116 # output array | |
117 out_array[ | |
118 tile_row * (H+Hs):tile_row*(H+Hs)+H, | |
119 tile_col * (W+Ws):tile_col*(W+Ws)+W | |
120 ] \ | |
121 = this_img * (255 if output_pixel_vals else 1) | |
122 return out_array | |
123 | |
124 | |
125 |