Mercurial > ift6266
comparison transformations/pipeline.py @ 130:38929c29b602
merge
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Thu, 18 Feb 2010 14:44:23 -0500 |
parents | ccce06590e64 |
children | 4981c729149c |
comparison
equal
deleted
inserted
replaced
129:a507adba0ce3 | 130:38929c29b602 |
---|---|
53 from slant import Slant | 53 from slant import Slant |
54 from Occlusion import Occlusion | 54 from Occlusion import Occlusion |
55 from add_background_image import AddBackground | 55 from add_background_image import AddBackground |
56 from affine_transform import AffineTransformation | 56 from affine_transform import AffineTransformation |
57 from ttf2jpg import ttf2jpg | 57 from ttf2jpg import ttf2jpg |
58 from ..pycaptcha.Facade import generateCaptcha | |
58 | 59 |
59 if DEBUG: | 60 if DEBUG: |
60 from visualizer import Visualizer | 61 from visualizer import Visualizer |
61 # Either put the visualizer as in the MODULES_INSTANCES list | 62 # Either put the visualizer as in the MODULES_INSTANCES list |
62 # after each module you want to visualize, or in the | 63 # after each module you want to visualize, or in the |
217 labels = ft.read(nist.train_labels) | 218 labels = ft.read(nist.train_labels) |
218 if prob_ocr: | 219 if prob_ocr: |
219 ocr_img = ft.read(nist.ocr_data) | 220 ocr_img = ft.read(nist.ocr_data) |
220 ocr_labels = ft.read(nist.ocr_labels) | 221 ocr_labels = ft.read(nist.ocr_labels) |
221 ttf = ttf2jpg() | 222 ttf = ttf2jpg() |
223 L = [chr(ord('0')+x) for x in range(10)] + [chr(ord('A')+x) for x in range(26)] + [chr(ord('a')+x) for x in range(26)] | |
222 | 224 |
223 for i in xrange(num_img): | 225 for i in xrange(num_img): |
224 r = numpy.random.rand() | 226 r = numpy.random.rand() |
225 if r <= prob_font: | 227 if r <= prob_font: |
226 yield ttf.generate_image() | 228 yield ttf.generate_image() |
227 elif r <= prob_font + prob_captcha: | 229 elif r <= prob_font + prob_captcha: |
228 pass #get captcha | 230 (arr, charac) = generateCaptcha(0,1) |
231 yield arr.astype(numpy.float32)/255, L.index(charac) | |
229 elif r <= prob_font + prob_captcha + prob_ocr: | 232 elif r <= prob_font + prob_captcha + prob_ocr: |
230 j = numpy.random.randint(len(ocr_labels)) | 233 j = numpy.random.randint(len(ocr_labels)) |
231 yield ocr_img[j].astype(numpy.float32)/255, ocr_labels[j] | 234 yield ocr_img[j].astype(numpy.float32)/255, ocr_labels[j] |
232 else: | 235 else: |
233 j = numpy.random.randint(len(labels)) | 236 j = numpy.random.randint(len(labels)) |